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The magneto-static behaviour of soft magnetic composites (SMCs) is investigated using tomogra-

phy based direct numerical simulation. The microgeometry crucially affects the magnetic proper-

ties of the composite since a geometry dependent demagnetizing field is established inside the

composite, which lowers the magnetic permeability. We determine the magnetic field information

inside the SMC using direct numerical simulation of the magnetic field based on high resolution

micro-computed tomography data of the SMC’s microstructure as well as artificially generated

data made of statistically homogeneous systems of identical fully penetrable spheres and prolate

spheroids. Quasi-static electromagnetic behaviour and linear material response are assumed. The

3D magnetostatic Maxwell equations are solved using Whitney finite elements. Simulations show

that clustering and percolation behaviour determine the demagnetizing factor of SMCs rather than

the particle shape. The demagnetizing factor correlates with the slope of a 2-point probability func-

tion at its origin, which is related to the specific surface area of the SMC. Comparison with experi-

mental results indicates that the relatively low permeability of SMCs cannot be explained by

demagnetizing effects alone and suggests that the permeability of SMC particles has to be orders of

magnitude smaller than the bulk permeability of the particle material. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4917490]

I. INTRODUCTION

Soft magnetic composites (SMCs) are materials made of

ferromagnetic particles mixed with an electrically insulating

binder. Although there are some attempts at using molding

techniques,1 the production process usually involves high

pressure compaction. This is often followed by curing or by

heat treatment if the binder is heat resistant.2,3 The powder-

like nature of SMCs results in isotropic ferromagnetic behav-

iour, which promises more freedom in the design of electrical

devices compared to the anisotropic character of laminated

steel. Additionally, the insulating substrate material prevents

the formation of macroscopic current paths and thus eddy

current losses are small even at high frequencies.4,5 Despite a

generally low permeability and high total core losses at low

frequencies, SMCs are attractive materials for a broad range

of applications in a wide frequency spectrum because of cost

benefits in the production process. These applications include

electric motors, actuators, and sensors as well as induction

heaters, inductors, and even microwave devices.6–10 A thor-

ough understanding of SMCs’ electric and magnetic proper-

ties is crucial for manufacturers as well as engineers. The

effect of mixing ratios and constituent particle properties on

the magnetic response of the composite is one of the open

questions and has been recently discussed by Anhalt and

Weidenfeller11–13 and others.14–16 Another question of inter-

est is the effect of strain and tension, usually involved in the

production process, on the electromagnetic properties and

was addressed by Hemmati et al.17 and Taghvaei et al.18 for

dense SMCs and Brosseau et al.19,20 for filled polymers.

Several models for heterogeneous magnetic materials

that relate particle permeability, particle shape, and filler

fraction to effective magnetic properties have been devel-

oped.21–27 Due to the mathematical analogy of electric per-

mittivity and magnetic permeability in static systems,28 these

models are closely related to the well known models for

electrically heterogeneous materials. These results29–32 also

lead to a better understanding of magnetic phenomena and

vice versa. Ferromagnetic particles repel magnetic fields and

form shape dependent demagnetizing fields, reducing the

particle’s permeability. Thus, in most models, the influence

of particle shape on magnetic properties is accounted for by

demagnetizing factors. This is the magnetic analogy to a

depolarizing field reducing the electric field inside a particle,

which is also often described by the depolarization factor.

For regular geometrical objects, such as ellipsoids, prisms,

or rods, these factors are well known from theoretical or nu-

merical analysis.33–37 In most models of composites, ellip-

soids are used to represent any particle shape since they form

homogeneous demagnetizing fields. This results in analytical

expressions mapping particle permeability, demagnetizing
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factor, and filler fraction to the corresponding quantities of

the composite.

Although most models do not directly consider mag-

netic field perturbation in the neighbourhood of particles

caused by their demagnetizing field, a significant fraction of

particles is influenced by their neighbours’ demagnetizing

fields (even in low density SMCs).38–41 Hence, the micro-

structure complicates modelling and greatly affects

properties like magnetic susceptibility and ferromagnetic

resonance frequency.

The objective of the current work is to determine the

influence of the irregular microstructure of an SMC on the

demagnetizing field represented by the demagnetizing factor.

We use X-ray micro-computed tomography (lCT)42 to

determine the material’s three-dimensional structure. A GE
nanotom-m43 high resolution lCT system capable of voxel

sizes of 1 lm3 and less is used. Subsequently, a 3D unstruc-

tured tetrahedral grid is generated using the measured geom-

etry and a tetrahedral mesh generator based on space

indicator functions developed by Friess et al.44 Extensive nu-

merical simulations of the magnetostatic behavior are carried

out using Whitney elements45 as implemented in the open

source finite element method (FEM) software ELMER.46

The numerical simulation provides detailed 3D electromag-

netic field information within and outside the SMC, which is

solely based on geometry data and magnetic permeabilities

of individual phases. Hence, the demagnetizing factor can be

investigated independent of non-geometric phenomena, and

experimental uncertainties. The combination of lCT and nu-

merical simulation is referred to as tomography based nu-

merical simulation (TBNS). It has been applied to radiative

transfer,47 conductive heat transfer,48 and fluid flow49 in a

range of different materials. To the best of our knowledge,

this is the first time that TBNS is applied to magnetic phe-

nomena. We used two sample sets, which were experimen-

tally investigated by Anhalt et al.50 For reference, a few

numerical studies on randomly generated data are done and

compared with the results of the sample sets and the already

published numerical work of Mattei and Le Floc’h.25

II. THEORY

A. Vector component volume average

Consider an SMC occupying the region V which can be

decomposed into the two disjoint regions Vm and Vd such

that V ¼ Vm [ Vd and Vm \ Vd ¼ ;. The subscripts m and d
refer to the magnetic and dielectric (nonmagnetic) material

phase, respectively. The volume average of the kth vector

component of the vector field v : V 7!R3 on the region Vm

is defined by

vkð Þm :¼
Ð
Vm

vkdV

jVmj
: (1)

According to the used standard basis fex; ey; ezg subscript k
can either be x, y, or z and will be reserved for that purpose

further on. jVmj denotes the volume of the region Vm. This

definition will help to describe the demagnetizing factor in a

concise fashion.

B. Demagnetizing factor

In a complete magnetic circuit and under the assumption

of linear material response, the magnetic flux density B is

related to an exciting magnetic field H0 via the relative per-

meability lr

B ¼ l0ðH0 þMÞ ¼ l0lrH0: (2)

Thus, for linearly responding material the magnetization M

of the ferromagnetic material is related to the magnetic field

strength H, which is magnetizing the material, by the linear

law

M ¼ vH ¼ ðlr � 1Þ �H; (3)

where v denotes the magnetic susceptibility. In non-

complete magnetic circuits, the demagnetizing field HD

reduces the magnetic field inside the ferromagnetic material

and Eq. (2) becomes

B ¼ l0ðH0 þMþHDÞ: (4)

Due to the microgeometry of SMCs non-complete circuits

have to be considered, even for toroidal cores.

Let us now consider an SMC of regular shape, e.g., an

ellipsoid or a cylinder, completely immersed in a uniform

magnetic field H0 applied along one of the principle direc-

tions ek. The orientation in space of the SMC is assumed to

be well defined and fixed. Using the notation introduced in

Subsection II A, the total magnetometric demagnetizing fac-
tor Ntot

k along direction ek is defined34 by

ðHD;k Þm ¼ �Ntot
k � ðMkÞm: (5)

Note that in the case of bulk ellipsoids Ntot
k is consistent with

the well known demagnetizing factors for ellipsoids but it

also covers non-uniform demagnetizing fields, e.g., in cylin-

ders. The term magnetometric is deduced from magnetome-

ter measurements and will be dropped hereafter. By taking

the vector component volume average Eq. (4) transforms to

ðBk Þm ¼ l0½ðH0;kÞm þ ð1� Ntot
k Þ � ðMkÞm�: (6)

In analogy to Eq. (2), an intrinsic permeability lk;m of the

magnetic phase of the SMC is defined by

ðBk Þm ¼ l0lk;mðH0;k Þm: (7)

This can be understood as the magnetic permeability cor-

rected by the intrinsic demagnetization. Since in non-

complete circuits the magnetic field acting on the material is

H ¼ H0 þHD volume averaging and Eq. (3) leads to the self

consistent law

ðMkÞm ¼ ðlr � 1Þ � ½ðH0;k Þm � Ntot
k � ðMkÞm�: (8)

Combining Eqs. (6), (7), and (8) the total demagnetizing fac-

tor Ntot
k (abbreviated with total DMF) of the magnetic mate-

rial phase becomes

163905-2 Arzbacher et al. J. Appl. Phys. 117, 163905 (2015)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

138.232.247.55 On: Fri, 24 Apr 2015 04:32:20



Ntot
k ¼

lr=lk;m

� �
� 1

lr � 1
; (9)

where lr is the relative permeability of the magnetic bulk

also measured in complete magnetic circuits.51 The only

total DMF of interest in the course of this work will be Ntot
z .

Therefore, the notation will be simplified by the definition

Ntot :¼ Ntot
z . As mentioned above, not only ring shaped

SMCs but also samples with finite sizes and regular outer

shapes are considered. In order to distinguish the demagnet-

izing effects caused by the composites’ outer shape from the

demagnetizing effects caused by the inner structure, it is use-

ful to decompose the total DMF into the inner DMF Ninn and

the geometric DMF Ngeo such that

Ntot ¼ Ninn þ Ngeo: (10)

The geometric DMF depends on the external shape of the

SMC alone, while the inner DMF incorporates the SMCs

microstructure. Hence, in bulk material Ninn vanishes

almost completely50,52 and Ntot is governed by the external

shape of the specimen. On the other hand, Ngeo vanishes in

toroids, infinitely long cylinders or prisms when their axis

is aligned along the exciting field direction.21 In all other

cases, a geometric demagnetization factor due to free mag-

netic poles at the surface of the composite, and addition-

ally an inner demagnetization factor due to free poles on

particles and/or agglomerates within the composites

appears.21,25,40 As a result, the permeability of the material

is reduced to an apparent permeability by the demagnetiz-

ing fields. Following Eq. (7) an apparent permeability

lk;app of the inscribed SMC sample including the non-

magnetic material phase can be defined by averaging over

the SMC’s entire volume instead. The apparent permeabil-

ity lk;app is also the one measured in experiments. The

only apparent permeability of interest will be lz;app and

thus the simplification lapp :¼ lz;app is made.

C. Directional 2-point probability function

A first approach to the analysis of the microstructure of

SMCs is motivated by the theory of random heterogeneous

materials (RHMs).28 For sufficiently large samples, i.e., con-

siderably larger than the correlation length of the quantity in

question, the methods of the RHM theory can be applied to

investigate single SMCs.28

Using the denomination given in Subsection II A, the in-

dicator function IðxÞ for the magnetic material phase is

IðxÞ ¼
1 for x 2 Vm and

0 in any other case:

�
(11)

The probability of finding two points x1 and x2 2 V sepa-

rated by x1 � x2 ¼ r v in Vm is the directional 2-point proba-
bility function

Ŝ2 r vð Þ :¼
Ð
V I xð Þ � I xþ r vð Þ dx

jVj ; (12)

where r is a radial distance along the direction given by the

unit vector v. Hence, the probability of finding two points x1

and x2 2 V with distance jjx1 � x2jj ¼ r in Vm is

S2 rð Þ :¼
Ð
@B Ŝ2 r vð Þdv

4pr2
; (13)

which is called the 2-point probability function. The set

@B ¼ fv 2 R3 : jjvjj ¼ 1g denotes the boundary of the unit

ball, and 4pr2 is the surface area of the sphere with radius r.

Note that usually periodic boundary conditions are applied

when xþ r v leaves the region V of the soft magnetic com-

posite sample.

In the case of isotropic random materials, the specific
surface area of a two-phase material can be derived from the

slope of S2ðrÞ at its origin.28 Analogously we define a direc-
tional specific surface area

ŝv :¼ d

d r
Ŝ2 r vð Þjr¼0: (14)

This can be interpreted as a projection of the specific surface

area on a plane orthogonal to direction v (cf. Fig. 1). Note

that Ŝ2ðr vÞ as well as S2ðrÞ do not provide information about

percolating clusters.28

Given a 3D voxel dataset representing the discretized

space of a heterogeneous material, Ŝ2ðr vÞ is obtained by

Monte Carlo integration.28

III. MATERIALS AND METHOD

A. Sample material

An irregularly shaped iron powder (Fe, ASC100.29,

H€ogan€as AB, Sweden, lr ¼ 103) mixed with polypropylene

and a needle shaped nano-crystalline powder (Finemet,

Arcelor S.A., Luxembourg, lr ¼ 105) mixed with wax are

investigated for several filler fractions. Identical materials

were used in an experimental study by Anhalt et al.50 Note

that the Finemet samples with filler fraction x¼ 0.2 and

x¼ 0.6 were not available and could not be investigated in

this study. The sample dimensions are approximately

3� 3� 15 mm3.

B. Microtomography

lCT images of the samples are obtained using the GE
nanotom-m43 high resolution tomography setup at the

FIG. 1. Sketches of the directional specific surface area ŝv for sphere and

spheroid packings for constant filler fraction x along directions i; j, and k.
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Vorarlberg University of Applied Sciences. Image stacks

representing slices of the three-dimensional structure—as

shown in Fig. 2—are reconstructed in the lCT process.

In Tables I and II, the scan parameters employed are

shown. All scans are done with full sample rotation along a

fixed axis.

C. Segmentation

The CT scans generally are of good quality with low

noise and a high contrast between the grey scale values of

the two material phases (cf. Fig. 2). Beam hardening effects

were corrected by a proprietary GE algorithm. Particle diam-

eters are significantly larger than the voxel sizes used. Since

the reconstructed images are homogeneous throughout, as is

the whole image stack, a local segmentation approach53,54 is

unnecessary. Therefore, a simple binary threshold filter is

used to segment the reconstructed images into magnetic and

dielectric phases. The global threshold value is chosen by

equalizing the filler fraction x of the digital data with the

known filler fraction of the original sample. Representative

spherical and cylindrical subsets of the data are selected for

further processing which is necessary because of computa-

tional limitations. This selection involves two steps: (1) a

manual preselection is done such that there are no inhomoge-

neities in particle distribution visible to the human eye. (2)

2-point probability functions are computed to obtain the cor-

relation length

lcorr ¼ minfr > 0 j 8r0 � r : jS2ðr0Þ � x2j � x=50g (15)

of the magnetic particles. A cubic volume V � ð3 lcorrÞ3 is

then accepted as representative. Note that due to statistical

fluctuations in the particle distribution, the filler fractions of

the subsets can slightly differ from those of the full dataset.

D. Mesh generation

The data subsets together with a cylindrical shell are

then inscribed into a cuboid. Mesh generation is subse-

quently carried out.44 Three different types A, B, and C of

meshes are created to investigate spherical, cylindrical, and

infinitely long SMC shapes (cf. Figs. 3 and 4). The dimen-

sions of the volumes investigated are determined such that

the SMC subset used for simulation is statistically relevant

while the numerical error remains small, i.e., the tetrahedra

are sufficiently small. The combination of these requirements

results in a mesh with regions of severely different mesh

density, e.g., tetrahedra inside the SMC subset are refined

seven times, whereas tetrahedra at the boundary @Axy are

untouched. To account for the difference in mean particle di-

ameter of Fe and Finemet samples, the mesh types are scaled

to two sizes I and II. The required mix of mesh types and

sizes produces overall four configurations whose dimensions

are given in Table III. This computational setup is necessary

to simulate SMCs of finite size and a regular outer shape,

which is impossible with a unit-cell based periodic structure.

E. Computer generated SMCs

As reference, artificial SMCs are computer generated.

They are created by packing identical fully penetrable

spheres28 or prolate spheroids (ellipsoids with semi axes

FIG. 2. Tomography slices of Fe (left) and Finemet (right) samples both for

a filler fraction of x¼ 0.3. Particles are bright, matrix is dark.

TABLE I. CT parameters for Fe samples for filler fractions x.

x 0.1 0.2 0.3 0.4

Tube voltage (kV) 150 150 160 160

Magnification (-) 25 70 58 44

No. of images (-) 1000 1700 1700 1700

Exposure time per image (ms) 2000 1250 2000 2000

No. averaged images (-) 4 4 3 3

Voxel edge length (lm) 3.99 1.41 1.71 2.26

x 0.5 0.6 0.7 0.8

Tube voltage (kV) 160 160 160 160

Magnification (-) 50 54 50 50

No. of images (-) 1700 1700 1700 1700

Exposure time per image (ms) 2000 1500 1500 1500

No. averaged images (-) 3 4 4 4

Voxel edge length (lm) 2.0 1.86 2.0 2.0

TABLE II. CT parameters for Finemet samples for filler fractions x.

x 0.1 0.3 0.4 0.5

Tube voltage (kV) 120 90 90 90

Magnification (-) 57 53 84 84

No. of images (-) 2000 1900 1800 1800

Exposure time per image (ms) 1500 2000 2000 2000

No. averaged images (-) 4 4 4 4

Voxel edge length (lm) 1.75 1.87 1.19 1.99

FIG. 3. Scheme of the simulation configurations. The grey regions represent

the SMC whereas the white cuboid models a surrounding of air in which a

homogeneous field is created by a continuous solenoid.
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c > b ¼ a) into prescribed SMC shapes using random center

points. This packing is also known as the “Swiss-cheese”

model and creates spatially uncorrelated spheres/spheroids,

which may overlap.55 In case of the spheroids, two configu-

rations are considered: (1) the major axis of each single sphe-

roid is oriented along the exciting field axis (z-axis) and (2)

the major axis of single spheroids is randomly oriented along

either x, y, or z-axis. Filler Fractions x, in the range

½0:01; 0:95�, are investigated. Equation (16) gives a useful

estimate for the total number nS of identical overlapping

spheres or spheroids of volume VS for a given filler fraction x
packed in a region with volume VSMC (Refs. 28 and 56):

nS xð Þ ¼ �ln 1� xð Þ � VSMC

VS
: (16)

Preliminary simulations showed that the DMFs of randomly

packed SMCs with an identical number of spheres or sphe-

roids and filler fractions x � 0:35 significantly deviated.

Contrary, above that filler fraction the deviation from the

mean value remains below 5%. To account for this deviation,

each data point for filler fractions x � 0:35 is computed as

the mean of six different mesh realizations with the same

number of packed particles. For x> 0.35, the data points

originate from one single realization. The deviation limiting

value x¼ 0.35 is in remarkable good agreement with the the-

oretical value xP ¼ 1=3 for the percolation threshold pre-

dicted by a Bruggemann-Landauer’s type effective medium

theory (EMT).57 Recent results by Torquato and co-workers

reported a percolation threshold in three dimensional space

of xP ¼ 0:3418.58,59 This threshold is the same for overlap-

ping spheres and oriented spheroids.60 The observed maxi-

mum deviation for x � 0:35 is DN̂tot ¼ 0:033. It shall be

noted that the deviation is largest for small filler fractions

and decreases with an increase of the filler fraction. A possi-

ble explanation for this is the relatively small number of par-

ticles used for small filler fractions. The number of particles

for larger filler fractions is significantly higher which leads

to better statistics. Additionally, the influence of the micro-

structure on the DMF may be suppressed by the effects of

clustering which increases with increasing filler fraction.

Packed spheroids with oriented major axis result in less devi-

ation than spheres or spheroids with unoriented major axis.

F. Simulation model

A homogeneous magnetic field, created by the current

density js ¼ j0 ð�y; x; 0ÞT inside the solenoid, is applied in

axial direction of the air cylinder containing the SMC subset.

The magnetic flux density B is determined by solving the 3D

magnetostatic Maxwell equations for a linear constitutive

law

curl H ¼ j;

B ¼ l0l H;

div B ¼ 0; (17)

inside the computational domain A (cf. Fig. 3). The boundary

conditions are

n�H ¼ 0 on @Axy;

n � B ¼ 0 on @Az; (18)

where n denotes the outer-pointing normal vector. The rela-

tive permeability l is a function of position which equals

one in the case of air or nonmagnetic binder or which is lr > 1

in case of magnetic material. The open source multiphysics

FEM software ELMER46 is used to compute the flux density

B using Whitney elements and a vector potential formulation

of Eq. (17). Once the magnetic flux density is known the

DMF is computed as described in Sec. II B.

G. Simulation

Simulations with single spheres are carried out to esti-

mate the relative error of the numerical method used. DMFs

N̂geo (equal to N̂tot in this setting) of bulk spheres with diam-

eters dS 2 f33; 67; 100; 133; 267glm are computed in type

AI simulations on meshes with minimal edge lengths of

dmin 2 f4:2; 5:0; 6:7; 8:3; 10:0; 13:3; 16:7glm and then com-

pared to the exact factor N¼ 1/3. Note that the circumflex in

N̂ will be used hereafter to point out that the value stems

from the simulation results. In Fig. 5, the relative error

jðN̂geo � NÞ=Nj is shown with respect to the inverse of the

minimal edge length dmin. The reference lines of slope �2

suggest quadratic convergence of the FEM. This means the

relative error is bounded by C d2
min for dmin sufficiently small

and some constant C independent of dmin. Simulations based

on cylinders with a length to diameter ratio of 2 : 1 also

show quadratic convergence and comparable relative errors.

Meshes with a minimal edge length of 5 lm in size I configu-

rations and 2:5 lm in size II configurations, indicated by a

dashed vertical line in Fig. 5, are used throughout the rest of

this paper. These lead to relative errors of approximately 5%

FIG. 4. Example mesh of a type CI simulation configuration based on the

microgeometry of an Fe SMC with x¼ 0.4.

TABLE III. Mesh dimensions of the four mesh configurations.

ls dS BA LA DC dC

ðlmÞ ðlmÞ ðlmÞ ðlmÞ ðlmÞ ðlmÞ

Type AI … 1000 5000 13333 2167 2000

Type BI 1400 350 5000 13333 2167 2000

Type CI … 350 1400 13333 2167 2000

Type CII … 350 700 6667 1083 1000
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for small objects and to significantly lower relative errors for

all larger objects. Small objects can have dimensions down

to only seven times the shortest edge.

The typical mesh size is about 107 elements, which

requires approximately 128 GB of memory: the Whitney ele-

ments method is known for its high memory consumption.

Mesh generation takes about three hours per mesh, while the

total solver run-time on 32 cores does not exceed one hour.

Simulation results are visualized with SALOME.61 Post

processing is done using vtk-libraries.62

H. Overall processes

For reasons of clarification we distinguish between the

AGBNS (artificial geometry based numerical simulation)

and the TBNS (tomography based numerical simulation)

process. The AGBNS process solely uses computer gener-

ated geometries and follows the workflow generation of
sphere/spheroid packings–mesh generation–numerical simu-
lation. Real SMCs are studied using the TBNS process

described by the workflow lCT scan–segmentation–mesh
generation–numerical simulation. Figure 6 shows the result

of the TBNS process–detailed magnetic field information

inside an SMC whose geometry was captured by lCT.

IV. RESULTS

A. Randomly packed spheres and spheroids

In Figs. 7(a)–7(c), the DMFs of artificial SMCs resulting

from a comprehensive series of AGBNS processes are

shown.

Figure 7(a) shows the results of type AI simulation

series. N̂tot
S is the DMF of randomly packed spherical

FIG. 5. Relative errors of simulated geometric DMFs of single full spheres

with diameters dS 2 f33; 67; 100; 133; 267glm. They are obtained from type

AI simulations on meshes with varying minimal edge lengths

dmin 2 f4:2; 5:0; 6:7; 8:3; 10:0; 13:3; 16:7glm. Reference lines of slope �2

are added to illustrate the quadratic convergence rate of the FEM.

FIG. 6. Cross sectional visualization of the magnetic flux density in an

SMC. The field is the result of a simulation of a type CI configuration based

on lCT scans of an Fe sample with a filler fraction of x¼ 0.3.

FIG. 7. DMFs of randomly packed spheres (N̂tot
S ) and oriented and unor-

iented prolate spheroids (N̂tot
S;2:1; N̂

tot
S;3:1; N̂

tot
S;2:1;r , and N̂tot

S;3:1;r) obtained from

simulations of types AI, BI, and CI configurations for various filler fractions

x. The subscripts 2 : 1 and 3 : 1 refer to the ratio of major to minor axis,

while subscript r in N̂tot
S;2:1;r and N̂tot

S;3:1;r indicates the random direction of the

major axis which is either oriented along the x, y, or z-axis. In the case of

oriented spheroids, the major axis is aligned in direction of the solenoid

axis. The major axis length for aspect ratio 2 : 1 is lP ¼ 80 lm and lP ¼
100 lm for an aspect ratio of 3 : 1. Spheres’ diameters are dP¼ 50 lm. The

assumed relative permeability of the magnetic material is lr ¼ 1000.
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particles with particle diameter dP ¼ 50 lm. The points

N̂tot
S;2:1; N̂tot

S;2:1;r, and N̂tot
S;3:1 are the DMFs of packed prolate

spheroids. If the filler fractions are low and approaching a

value x! 0, the theoretically calculated values for spheres

(NS ¼ 1=3) can be observed for the simulations of single

spheres (cf. bullets in Fig. 7(a)). This observation is also

made analogously for oriented single spheroids with aspect

ratios of 2 : 1 (cf. diamonds in Fig. 7(a)) and 3 : 1 (cf. stars

in Fig. 7(a)) which reproduce theoretical values of NS;2:1 ¼
0:1736 and NS;3:1 ¼ 0:1087, respectively.21,35 Randomly

packed spheroids tend to a DMF of N̂tot
S;2:1;r ¼ 0:28 for a filler

fraction approaching x! 0. This value corresponds to a

spheroid with an aspect ratio of 5 : 4.21 However, this differ-

ence in the values of spheres and unoriented spheroids for

x! 0 can be ascribed to the low number of particles. A

higher number of randomly packed spheroids would finally

lead to a quasi-spherical particle with a DMF of NS ¼ 1=3.

This would simultaneously require a much larger volume to

retain the low filler fraction. Hence, it can be assumed, that

the calculated values also represent “real” SMCs with ran-

domly oriented spheroids at low filler fractions, because an

agglomeration of the spheroids to one big “quasi-spheroid”

is unlikely. With increasing filler fraction the DMFs of the

investigated particle configurations equalize more and more.

For x¼ 0.4, the calculated DMFs are nearly independent on

the particle’s shape and orientation. The DMFs of the SMC

asymptotically approach the straight line N̂totðxÞ ¼ x=3 and

almost coincide with that line for x � 0:5. Extrapolation to

x¼ 1 yields the DMF N̂totð1Þ ¼ 1=3 of the fully packed

SMC, which is the DMF of a sphere–the shape of the SMC

in the simulated configuration.

The results of a type BI simulation series are shown in

Fig. 7(b). The only difference to the configuration in

Fig. 7(a) is the SMC’s shape which has changed from a

sphere to a cylinder with length to diameter ratio lS=dS ¼ 2

(cf. Fig. 3). The configurations of the packed fully penetrable

spheres and spheroids are as described above. The DMFs of

the sphere and spheroid packings exhibit the same behaviour

as in Fig. 7(a). However, the DMFs asymptotically approach

the straight line N̂totðxÞ ¼ 0:141� x. They are very close to

this line for x � 0:5. Thus, for the fully packed SMC one

finds N̂totð1Þ ¼ 0:141, which is the DMF of a cylinder with

l=d ¼ 2 and magnetic susceptibility v¼ 1000.21,34 This is

consistent with the configuration simulated.

Figure 7(c) shows the results of a type CI simulation se-

ries modeling infinitely long cylindrical SMCs. In an infin-

itely long cylinder, the DMF for bulk material vanishes. This

implies that in all type C configurations the DMF is solely

determined by the microstructure. Therefore, in type C con-

figurations N̂tot ¼ N̂inn and the term inner DMF can be used

equivalently. An additional simulation series is done to com-

pute the inner DMFs of artificial SMCs filled with unoriented

overlapping spheroids whose center points and orientations

are uniformly distributed as already described above. They

have an aspect ratio of 3 : 1 and a major axis length of lP ¼
100 lm and are denoted by N̂tot

S;3:1;r (triangles in Fig. 7(c)). In

all SMC packings used, the DMFs are almost zero for

x> 0.4. This is again in good agreement with the configura-

tion simulated. For filler fractions x< 0.4, the DMFs are

slightly smaller than those resulting from type AI and type

BI simulations. The values extrapolated to x! 0 underesti-

mate the expected results by approximately 0.02. This can be

explained by the fact that all particles in type CI simulations,

which are cut by the SMC boundary, become thinner, which

corresponds to a higher ratio of major to minor axis. The

unoriented spheroid packings (subscript r) with aspect ratio

2 : 1 (cf. squares in Fig. 7(c)) show a larger DMF than those

with aspect ratio 3 : 1 (cf. triangles in Fig. 7(c)) for x< 0.4.

Also the slope of the DMFs of unoriented spheroid packings

with aspect ratio 2 : 1 at the origin is slightly larger than

those of spheroid packings with aspect ratio 3 : 1. The differ-

ences of the DMFs of unoriented spheroids and spheres for

x! 0 are already discussed above. However, the difference

of slope of the calculated values for x � 0:4 is assumed to be

the result of different affinities to clustering.

Recalling the decomposition of the DMF described in

Eq. (10) two essential observations become apparent in this

subsection: (1) In the limit x! 0 particles do not interact.

The macroscopic shape of the SMC has no influence on the

DMF which is completely governed by the shape of the par-

ticles used. In this limit, N̂geo ¼ 0 and N̂inn is the statistical

mean of the geometric DMFs of the particles used.

(2) Regardless of the used particle shape the DMFs asymp-

totically approach a straight line N̂totðxÞ ¼ Ngeo � x where

Ngeo is the geometric DMF of the SMCs external shape. For

a particle permeability of lr ¼ 1000, the DMFs are very

close to that line for x � 0:4. Mattei and Le Floc’h25 explain

the decrease of the DMF (cf. Fig. 7(c)) with the formation of

clusters of increasing size until the cluster size diverges at

the percolation threshold. In contrast to their results no per-

colation “jump” can be found in Fig. 7. In the current work,

the DMF is defined with respect to the magnetic material

phase only, while Mattei and Le Floc’h define the DMF with

respect to the whole sample. Since the DMF is completely

governed by the external shape of the SMC once x � 0:4 we

consider x¼ 0.4 as the percolation threshold. This is in good

agreement with the results of Mattei and Le Floc’h25 and

slightly larger than the geometrical percolation threshold

xP ¼ 0:3418. The surprisingly simple linear lower bound,

N̂totðxÞ ¼ Ngeo � x, cannot be rigorously explained at this

time.

Figure 8 compares the inner DMFs of two simulation se-

ries, which are done in a type CI configuration for two differ-

ent values of the particle permeability lr. It can be seen that

the DMF decreases faster for a given particle shape when the

particle permeability is higher, which is in accordance to the

results of Mattei and Le Floc’h.25 Especially, it can be

observed that the DMFs vanish for filler fractions larger than

approximately 0.4 when a particle permeability of lr ¼ 1000

is assumed, while for a particle permeability of lr ¼ 20

DMFs remain larger than zero until a filler fraction of x � 1

is reached.

The results shown are based on the numerical solution

of Maxwell’s equations and can be understood qualitatively:

A significant interaction of magnetic particles was reported

to start at a filler fraction of x¼ 0.2 independently by

Weidenfeller,63 and Mattei and Le Floc’h.25 For filler frac-

tions exceeding x¼ 0.2, the mutual influence of particles
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increases with increasing permeability of the magnetic mate-

rial. Furthermore, for non-ellipsoidal single particles the

DMF itself depends on the magnetic permeability and is no

longer a factor of shape alone. For instance, the DMF of cyl-

inders with an axis aligned in the field direction decreases

with increasing permeability in the whole range of axis to di-

ameter ratios c, and is more pronounced for large c.34

In geometries created by distributions of hard or penetra-

ble spheres or spheroids rigorous upper and lower bounds

were reported to be a valuable tool to determine the effective

permittivity30 or the effective conductivity55,60 of the hetero-

structure. Although, due to the aforementionend mathematical

analogy, these bounds should also be applicable to the mag-

netic permeability no such bounds are known for the DMF.

B. Fe sample series

The DMF of Fe samples is simulated in type CI configu-

rations following a TBNS process. Since, as already men-

tioned above, in this configuration N̂geo ¼ 0 the DMF

depends on the SMC’s microstructure only and N̂tot ¼ N̂
inn

.

In order to emphasize that equivalence the latter term N̂inn

will be used hereafter. Samples with nominal filler fraction

x 2 f0:1; 0:2;…; 0:8g are inscribed into the configuration in

three different orientations such that one of the three axes

e1; e2; e3 of the sample’s local coordinate system is aligned

to the z-axis (cf. Fig. 3). Subscript d 2 f1; 2; 3g in N̂inn
d

denotes one of these orientations. The results of simulations

using the relative magnetic permeability lr ¼ 1000 of the

bulk are shown in Fig. 9. Since the orientation used in the

simulations cannot be related to the orientation used in the

experiments the DMFs are sorted such that the largest DMF

corresponds to direction e1, while the smallest DMF relates

to direction e3. This ordering will be used throughout this pa-

per. Note that the actual filler fractions of the SMC cutouts

differ from the nominal ones because of the inhomogeneity

of the magnetic loading in the samples used. For every mesh,

the minimal edge length dmin corresponds to 5 lm in physical

space and the SMC subset simulated has dimensions

; 0:7 mm� 1:4 mm. With a mean particle diameter dFe ¼
88 lm of the iron-powder the relative numerical error is esti-

mated to be less than 5% (cf. Fig. 5).

Two issues stand out: (1) The inner DMFs obtained

from the simulations strongly deviate from experimental

results and (2) the DMFs show a strong anisotropy at

x 2 f0:1; 0:2g. The directional 2-point probability functions

equally exhibit the observed anisotropy (cf. Fig. 10).

For constant filler fractions larger gradients of Ŝ2 at

r¼ 0 correspond to smaller DMFs. This is also illustrated in

Fig. 11 which relates the inner DMFs to the directional spe-

cific surface area ŝv corresponding to the slope of Ŝ2 at the

origin. The data points for different orientations and constant

filler fractions x¼ 0.1 and x¼ 0.2 lie approximately on

straight lines, whose slopes decrease with increasing filler

fractions. For larger filler fractions, this relation cannot be

observed and is probably concealed by long range percola-

tion. No simple relation between N̂inn and ŝv for varying

filler fractions can be found, which is expected since the 2-

point probability function contains no information about per-

colating clusters.

Utilizing the previously generated meshes the Fe sam-

ples are further studied with particle permeabilities

lr 2 f10; 20; 50; 100g. To account for anisotropy mean val-

ues hN̂inni ¼ ðN̂inn
1 þ N̂inn

2 þ N̂inn
3 Þ=3 of the inner DMFs are

computed. Figure 12 shows that the experimentally deter-

mined DMFs are approached for lower permeabilities. The

dependence of the DMF from particle’s permeability,

FIG. 8. Comparison of inner DMFs of randomly packed spheres (N̂tot
S ) and

oriented prolate spheroids (N̂tot
S;2:1) with a major to minor aspect ratio of 2 : 1.

The DMFs are computed for two different values of magnetic permeability

lr and various filler fractions x. Results are obtained from simulations of

type CI configurations.

FIG. 9. Inner DMF N̂inn of Fe sample series for eight filler fractions and

three orthogonal orientations indicated by subindices 1, 2, and 3 obtained

from type CI configurations based on tomography data. Magnetic permeabil-

ity of particles is set to lr ¼ 1000. For comparison the experimentally deter-

mined corresponding inner DMFs Ninn
exp : are shown.50 The fit function

x 7! expð�3 xÞ=3 to the experimental data (dashed line) was determined by

Anhalt et al.50

FIG. 10. Directional 2-point probability functions Ŝ
ð10Þ
2 and Ŝ

ð20Þ
2 for Fe sam-

ples and filler fractions x¼ 0.1 and x¼ 0.2, respectively. They are computed

along three orthogonal sample orientations ej in steps of 1 lm. The super-

scripts (10) and (20) relate to the considered filler fractions in percent.
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already described in Subsection IV A (Fig. 8), can once again

clearly be seen in Fig. 12. This behavior was previously

described by Mattei.25 Note that the standard deviation of

the DMFs (error bars in Fig. 12) increases with decreasing

particle permeability lr which indicates that the microstruc-

tural influence also depends on the particle permeability.

Additionally, apparent permeabilities lapp;j are deter-

mined from this simulation series for each filler fraction and

sample orientation ej. In Fig. 13, the mean value hlappi
¼ ðlapp;1 þ lapp;2 þ lapp;3Þ=3 of the apparent permeability is

compared to the experimentally measured permeability. The

exciting magnetic field strength used is jH0j ¼ 10 000 A=m.

In the work of Anhalt and Weidenfeller,11 the experimen-

tally measured permeabilities were compared with mathemati-

cal models by Rayleigh, Bruggeman, McLachlan, and others.

Only Bruggeman’s model described the measured values in

the range of 0 � x � 0:6 without making use of fit parameters.

Magnetic permeabilities for x> 0.6 could only be described by

models which were fitted to the experimental data.

For filler fractions x � 0:5, the simulated apparent per-

meabilities assuming a particle permeability lr ¼ 50 are in

good agreement with experimental results while they are sig-

nificantly lower for x> 0.5. For a filler fraction of x¼ 0.6,

the experimental results coincide with a simulated particle

permeability of lr � 100, and for a filler fraction of x¼ 0.8

experimental and simulated data are in agreement, when a

permeability of lr ¼ 1000 is assumed.

Such an extraordinary increase in the permeability was

already described by Mattei64 for filler fractions exceeding

x¼ 0.6. Mattei explained this behavior by the agglomeration

of particles to several clusters like grains in a bulk material

with grain boundaries between these clusters. The generation

of such grain like structures leads to cooperative phenomena

in domain wall distribution and movement. Because the

model used does not include such phenomena a deviation

between calculated and experimental values appears.

Mattei’s hypothesis may be tested by introducing a particle

permeability which depends on the particle size or its neigh-

borhood. Once the magnetic permeability is determined as a

function of location the numerical simulation is carried out

with the same solver as used in this work. A good model for

the particle permeability as a function of particle size is cru-

cial for this procedure. Note that the results from simulations

using a particle permeability of lr ¼ 1000 are farthest away

from the experimental results for both, the DMFs and the

effective permeabilities, while they are in rather good agree-

ment for smaller particle permeabilities. This corresponds to

an experimental study with FeSi composites by Anhalt

et al.50 in which a particle permeability of lr � 4 was meas-

ured although the corresponding bulk permeability is

lr � 500.

As mentioned before it is assumed that rigorous lower

and upper bounds constructed of functionals of n-point prob-

ability functions S2ðrnÞ describe the magnetic permeability

below and above the percolation threshold.55,60 The evalua-

tion of these bounds for 3D real geometries is extremely

costly since the computation of the functionals involves inte-

grals of SnðrnÞ over the entire domain. Instead, the well

known but less accurate lower and upper bounds according

to the self-consistent model of Hashin and Shtrikman65 are

plotted for an assumed particle permeability of lr ¼ 1000

and lr ¼ 50 in Fig. 13. In the case of lr ¼ 1000, both the

FIG. 11. Inner DMFs N̂inn
j of Fe samples related to the directional specific sur-

face area ŝv along three orthogonal sample orientations ej. The DMFs are

obtained from type CI configurations with a particle permeability of

lr ¼ 1000.

FIG. 12. Mean inner DMFs hN̂inni of the DMFs of the Fe sample series for

three orthogonal directions computed for particle permeabilities

lr 2 f10; 20; 50; 100; 1000g. Error bars represent the standard deviation of

the DMFs of different orientations. The experimentally determined DMFs

Ninn
exp : are shown for reference and taken from Ref. 50. The fit function

x 7! expð�3 xÞ=3 to the experimental data (dashed line) is taken from

Anhalt et al.50

FIG. 13. Mean apparent permeability hlappi of Fe sample series computed

with particle permeabilities lr 2 f10; 20; 50; 100; 1000g for eight filler frac-

tions. The experimentally determined apparent permeabilities l exp :app of

the samples are shown for reference purposes and taken from the work of

Anhalt.11 The Hashin and Shtrikman lower and upper bounds are plotted for

particle permeability lr ¼ 1000 (thin solid line) and lr ¼ 50 (thin dashed

line) using a polymer permeability of lpoly ¼ 1. The mean of the intrinsic

permeability defined in Eq. (7) is plotted for a particle permeability lr ¼ 100

(dotted line) and extracted from the mean DMF hN̂inni using Eq. (9). It natu-

rally provides an upper bound for the corresponding apparent permeability.
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experimental and the simulated data are bounded; whereas

for decreasing lr the lower bound is trespassed more and

more while the upper bound stays in good order. For lr ¼ 10

almost all simulated datapoints are below the lower bound of

Hashin and Shtrikman (not illustrated). Note that in the con-

figurations considered a natural upper bound to the apparent

permeability is given by the intrinsic permeability defined in

Eq. (7). Once the DMF is known the intrinsic permeability is

determined by Eq. (9).

C. Finemet sample series

Analogously to Subsection IV B, the inner DMFs N̂inn of

the Finemet sample series consisting of four samples with

nominal filler fractions x 2 f0:1; 0:3; 0:4; 0:5g are computed

for three orthogonal sample orientations following a TBNS

process. Since the mean diameter dFinemet ¼ 35 lm of the

Finemet-powder used is less than half the diameter of the

iron powder dmin is set to correspond to 2:5 lm to keep the

estimated numerical error less than 5%. The SMC subset

used has a diameter of 0:35 mm and a length of 0:7 mm.

Simulations using the bulk permeability lr ¼ 105 of

Finemet lead to linear systems which were not solvable with

the iterative solvers available. This might be caused by the

extreme jump of the relative permeability at magnetic-

nonmagnetic interfaces. In first approximation, the particle

permeability is reduced to smaller values. The results of the

simulation study computed with particle permeability lr ¼
1000 are shown in Fig. 14. The observations regarding the

inner DMFs are analogous to that in Subsection IV B.

As before directional 2-point probability functions are

computed for the Finemet samples. They are depicted in Fig.

15. The observations from Subsection IV B recur: the DMFs

obtained from simulations for constant filler fractions are

largest for steepest and smallest for flattest Ŝ2 curves at

r¼ 0. Again, no simple relation of DMFs and ŝv for different

filler fractions can be found, see Fig. 16. The previously gen-

erated meshes are additionally used for a set of simulations

with smaller particle permeabilities lr 2 f10; 20; 50; 100g.
The mean value hN̂inni of the three DMFs of orthogonal

directions are computed for each filler fraction, see Fig. 17.

Good agreement between experiment and simulation is

observed for a relative permeability lr ¼ 50, which is signif-

icantly smaller than the bulk permeability lr ¼ 105 of

Finemet.

It is remarkable, that—despite of the differences in per-

meability values of Fe and Finemet—the experimental and

calculated results for filler fractions x � 0:5 are in good

agreement for an assumed particle permeability of lr ¼ 50.

Nevertheless, this finding corresponds to previous permeabil-

ity measurements of various SMCs, which all show nearly

the same permeability for filler fractions x � 0:5 despite of

the magnetic material used.63

FIG. 14. Inner DMFs N̂inn of Finemet sample series for four filler fractions

and three orthogonal sample orientations indicated by subindices 1, 2, and 3

obtained from type CII configurations based on tomography data. Particle

permeability is set to lr ¼ 1000. The experimentally determined corre-

sponding DMFs50 Ninn
exp : are depicted for reference. The fit function

x 7! 0:19 expð�3:3 xÞ þ 0:005 to the experimental data (dashed line) was

determined by Anhalt et al.50

FIG. 15. Directional 2-point probability functions Ŝ
ð10Þ
2 and Ŝ

ð30Þ
2 for Finemet

samples and filler fractions x¼ 0.1 and x¼ 0.3, respectively. They are com-

puted along three orthogonal sample orientations ej in steps of 1 lm. The

superscripts (10) and (30) relate to the considered filler fractions in percent.

FIG. 16. Inner DMFs N̂inn
j of Finemet samples related to the directional spe-

cific surface area ŝv along three orthogonal sample orientations ej. The

DMFs are obtained from type CII configurations with an assumed particle

permeability of lr ¼ 1000.

FIG. 17. Mean inner DMFs hN̂inni of the DMFs of Finemet sample series for

three orthogonal directions. They are computed for four filler fractions and

for particle permeabilities lr 2 f10; 20; 50; 100; 1000g. Error bars represent

the standard deviation of the DMFs of different orientations. Experimentally

determined DMFs Ninn
exp : (Ref. 50) of the identical samples are shown for ref-

erence. The fit function x 7! 0:19 expð�3:3 xÞ þ 0:005 to the experimental

data (dashed line) was determined by Anhalt et al.50
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V. DISCUSSION

In this work, the influence of the microstructure of soft

magnetic composites (SMCs) on the demagnetizing factor

(DMF) was studied using tomography based numerical simu-

lation (TBNS). TBNS provides very detailed magnetic field

information. Simulations show that microgeometry strongly

affects the DMFs. This can be observed in the significant

variance of the DMFs for small filler fractions. The variance

is larger for small particle permeabilities lr and smaller for

large particle permeabilities. It vanishes above a percolation

limit which itself depends on the particle permeability. For

lr ¼ 1000, the percolation limit occurs at a filler fraction

xP � 0:35. The percolation limit for lr < 1000 can be found

at larger filler fractions. Above the percolation limit, the

microgeometry of the SMC no longer affects the DMF of the

SMC. Generally agglomeration and clustering seem to gov-

ern the DMF of SMCs in the complete range x 2 ½0; 1�. With

increasing filler fraction particles come close enough to

interact. Following the pole avoidance principle they com-

bine to larger magnetic particles resulting in a lower DMF.

At the same time, the formation of such clusters reduces the

influence of the microgeometry. Eventually, the percolation

threshold is reached, above which the SMCs’ DMF is gov-

erned by its macroscopic shape alone and approaches the lin-

ear law N̂totðxÞ ¼ Ngeo � x.

The DMF and the derivative of a 2-point probability

function at its origin are linearly related for different orienta-

tions and for fixed small filler fractions. However, there does

not seem to be any simple relation accounting for different

filler fractions.

Based on the results of this TBNS study and their exper-

imental counterparts,50 we conjecture that the particle per-

meability of SMCs is orders of magnitude smaller than their

bulk permeability which is in accordance with a former study

of Le Floc’h et al.22 who attributed this to a reduced domain

wall mobility due to a strong adherence of domain walls to

particle edges. The low number of moveable domain walls in

SMCs was later shown by Anhalt.4

However, uncertainties regarding the comparison

between TBNS and the experiment arise both from (1) the

experimental and (2) the TBNS side. On the experimental

side, it is difficult to isolate single quantities such as the

DMF from indirect measurements. On the TBNS side, the

reliability of results is limited by the underlying model

assumptions (e.g., linear material response). In addition, the

geometric resolution of lCT scans is limited and computer

memory restricts the size of the domain that can be

simulated.

The relative errors in the numerical procedure used are

estimated to be less than 5%. DMFs obtained from computer

generated artificial SMCs are in good agreement with the

work of Mattei and Le Floc’h25 who used random sphere

packings on a grid.

This work demonstrates that TBNS is applicable to mag-

netostatic phenomena and provides a tool to investigate mag-

netic properties. The simulation results obtained in this study

confirm the massive influence of microstructure, agglomera-

tion, and percolation on the magnetic properties of SMCs

and heterogeneous magnetic materials. The 4.5 TB of elec-

tromagnetic field data produced provides a rich source for

further research and can be obtained from the authors at any

time.
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