Visualization of Freezing Process *in situ* upon Cooling and Warming of Aqueous Solutions

Anatoli Bogdan^{1,2,3*}, Mario J. Molina⁴, Heikki Tenhu², Erminald Bertel¹, Natalia Bogdan⁵ & Thomas Loerting¹

¹Institute of Physical Chemistry, University of Innsbruck, Innrain 52a, A-6020, Innsbruck, Austria.

²Laboratory of Polymer Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014, Helsinki, Finland.

³Department of Physical Sciences, University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland.

⁴Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0356, USA.

⁵Faculty of Medicine, University of Helsinki, P.O. Box 63, FIN-00014, Helsinki, Finland.

Legends for videos in SI

1. Video 1: The fast and slow freezing and subsequent melting of 20wt% CA (citric acid).

Video 1: Video 1 (10.8 MB) demonstrates the fast and slow freezing of 20wt% CA upon cooling. The slow freezing occurs in FCS₂ and is terminated by the onset of the liquid-FCS₂-glass transition at ~208K. Upon warming, the slow freezing recommences above the reverse glass-liquid-FCS₂ transition at ~208K and proceeds to ~230K. Above ~230K ice only melts. Temperature change is seen in the left bottom corner.

2. Video 2: The formation of FCS_2 in front of the advancing IF/FCS_1 front in freezing 40wt% CA.

Video 2: Video 2 (4.22 MB) demonstrates the formation of FCS_2 in front of the advancing IF/FCS₁ front during the freezing of 40wt% CA. In the left upper corner, the FCS_2/air borderline moves when the IF/FCS₁ front propagates.

3. Video 3: The freezing of 58wt% CA from multiple ice nucleating events.

Video 3: Video 3 (3.99 MB) demonstrates that 55wt% CA freezes from multiple ice nucleating events. Dark dots are ice crystals formed by vapour deposition on the outer side of a cover glass.

4. Video 4: The fast and slow freezing and subsequent melting of 40wt% sucrose.

Video 4: Video 4 (15.8 MB) demonstrates the fast ta slow freezing of 40wt% sucrose upon cooling. The slow freezing occurs in FCS₂ and is terminated by the onset of the liquid-FCS₂-glass transition at ~230K. Upon warming, the slow freezing recommences above the reverse glass-liquid-FCS₂ transition at ~230K and proceeds to ~245K. Above ~245K ice only melts.

5. Video 5: Simultaneous freezing and ice melting upon warming of 62wt% CA.

Video 5: Video 5 (6.95 MB) demonstrates simultaneous slow freezing in FCS₂ and ice melting in FCS₁ upon warming of 62wt% CA previously cooled to 173K. The freezing starts at ~220K and proceeds to ~240K. Ice melting in FCS₁ starts at ~233K and is seen as the increasing brightness of IF/FCS₁. Between ~233K and ~240K the freezing in FCS₂ and melting in FCS₁ proceed simultaneously.