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Jacob Israelachvili in his famous book Intermolecular and Sur-
face Forces1 writes—commenting on the observed increase in the
dielectric constant and in the proton conductivity on freezing—that
“to understand the secrets of liquid water one may first have to
unravel those of ice.” This Special Topic on the “Chemical Physics
of Supercooled Water” in The Journal of Chemical Physics has been
ideated, planned, and realized with the idea that not ice, but super-
cooled water, holds promises for unravelling the peculiar physics
originating from the directionality and the strength of the water-
water interaction. It is in supercooled states that the famous ther-
modynamic anomalies of water show up in full glory. Indeed in
water, differently from other liquids and despite the reduction in
thermal vibrations, fluctuations in density and enthalpy signifi-
cantly rise on cooling, as revealed by the temperature dependence
of the compressibility and specific heat. Supercooling thus acts as a
magnifying lens allowing us to explore the origin of water’s pecu-
liar dynamic and thermodynamic behavior. However, the study
of supercooled water is often hampered due to its metastability
with respect to crystalline ices. Especially, if long measurements
are required, it is only possible to study supercooled water down
to temperatures of 255 K as in Ref. 2 on D2O expansivity, or to
235 K as in the study of the O–O radial density functions.3 Crys-
tallization rates rise so rapidly with decreasing temperature that a
boundary for the possibility to study supercooled water has been
set, below which noncrystalline water can no longer be studied.
This boundary is, however, only a soft limit and depends on the
timescale, where typically minutes or seconds are used to set the
line. An understanding of nucleation and ice growth is of key impor-
tance in this context.4–7 When beating crystallization through ultra-
fast cooling of liquid droplets or through vapor-deposition of water

on cold substrates, the amorphous solid state can be reached. Such
amorphous samples may also crystallize, since crystallization rates
rapidly increase upon heating, typically near 150 K. References 8
and 9 go beyond this limit and determine nucleation and crys-
tallization rates in transiently heated films for temperatures up
to 230 K.

In order to be able to measure the properties of noncrystalline
water in its “no-man’s land,” quite often, solutes and/or confinement
are employed instead of ultrafast experiments. References 10–13
employ salt solutions, Ref. 14 investigates polyalcohol solutions,
Ref. 15 studies the monoalcohol methanol, and Ref. 16 studies the
cryoprotecting sugar trehalose. References 17–19 study supercooled
water in confinement, and Ref. 20 even combines the two strategies,
putting confined salt solutions under scrutiny.

While it is appealing to study confinement and aqueous solu-
tions because water rarely occurs in its pure form in nature, care
needs to be taken to extrapolate from such studies to the prop-
erties of pure H2O. Certainly, many of water’s properties are
affected by confinement, and it is even possible to render water
unfreezable due to the interaction with its surroundings. This is
often the case for hydration water, which is studied in Refs. 16
and 21–23.

In this collection the physical origins behind the increase in
the density and enthalpy fluctuations are discussed.24 The presence
of distinct local structures, competing to minimise the Gibbs free
energy, characterised by differences in their local density and local
potential energy may provide an accurate modelling of water’s ther-
modynamics.2,25–27 Some of the articles discuss how to identify these
structures,3,28–30 how to distinguish them from ice-like structures,31

and how to decipher their contribution to the anomalies of water.32
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Central in this line of research is the detection of correla-
tion between the spatial ordering of these local structures, a cor-
relation that would indicate the possibility of a true phase separa-
tion in the no-man’s land.26,33–35 Beside temperature and pressure
changes, perturbation of the water network via addition of small
solute molecules,10–12,14,20,36 even active ones,37 offers an alternative
way of shifting the equilibrium between different local structures in
a controlled way.

Supercooled water can also be studied in a tiny tempera-
ture window above the glass transition temperature, just before
crystallization takes place. Below the crystallization line, noncrys-
talline water can be studied as an amorphous solid or as an
ultraviscous liquid in a tiny window above the glass transition tem-
perature. In this low-temperature regime, first-order like transitions
occur, where the density changes suddenly by 25%. By contrast,
supercooled water above the no-man’s land does not experi-
ence such a transition, but rather a continuous change. That
is, one cannot speak about two distinct types of liquid water
above 200 K as pointed out in Ref. 38, but this could be differ-
ent near 150 K. The reversible interconversion between the low-
and high-density amorphous ices is thought to be low tempera-
ture proxy of a possible liquid-liquid transition that might take
place just below the crystallization line and within the no-man’s
land.

Several articles in this collection are devoted to the study of
water polyamorphic structures and to the connections, if any, of
these structures with the liquid state. Amorphous states can be gen-
erated by vapor deposition, hyperquenching, pressure amorphiza-
tion,39 and interconversion of different amorphous states.40 Also, in
this low-temperature regime, aqueous solutions may be employed to
possibly reach higher temperatures without crystallization. The sta-
ble crystalline structures are then often clathrate hydrates or even
chiral hydrates rather than ice Ih or high-pressure ice phases, and so
the study of hydrates and their behavior in comparison with pure
ices and supercooled water is of interest.30,39,41–43 The relation of
the sharp polyamorphic transition with a possible first order liquid-
liquid transition is tackled in this special topic from quite different
angles.2,10,14,27,40,44,45 Needless to say, the investigation of out-of-
equilibrium systems requires novel experimental41 and theoretical
approaches.44,45

The investigation of ice,46 ice nucleation, and ice growth
rate4–9,47 as a function of temperature, pressure, and impurities is
another crucial topic discussed in the collection, a topic of relevance
for basic science research and climate models, as well as for weather
forecasts. In fact, the question whether clouds remain supercooled,
crystallize partly or fully, and whether the droplet freezes from the
inside outwards or from the outside inwards are crucial for our
understanding of their reflective properties, which govern the cool-
ing effect that clouds have on our climate. Indeed, water droplets
in the atmosphere are often in metastable conditions. This requires
control of the proper order parameters31 and of several delicate
quantities48 entering in the nucleation rate.

The glassy dynamics of water molecules in supercooled states
is also a key feature to understand water’s complex behaviour.
In fact, thermodynamic and structural modifications that water
undergoes upon supercooling in the bulk phase, in confinement
and in solutions—including solutions of biomolecules—strongly
affect the slow dynamics and the dynamic crossovers observed in

water upon decreasing temperature. This topic is here discussed
in bulk, under confinement and in solutions,12,13,15,17,19,49 as well as
in the proximity of biomolecules.16,21–23,50,51 These articles focus on
glassy dynamics (both α and secondary relaxations) in pure and in
biological-hydration water. Some articles also study the onset of a
super-slow relaxation connected to the coupling with the dynamics
of the biomolecule. The influence of hydrophobicity on the diffusion
of small spheroidal particles is discussed in Ref. 52.

In total, the present collection encompasses 51 articles, testi-
fying the importance of water and aqueous solutions in sciences
and our environment, both on Earth and in space. The research
described in these articles certainly helps to push the forefront of
our understanding of the chemical physics of supercooled water.
Nonetheless, more questions than the ones answered still remain
open, as pointed out in several concluding sections in this collec-
tion. In this sense, this special collection will hopefully be a stimulus
for further research and trigger scientific discourse that will bring
the field forward.

We thank the authors of the articles included in this Special
Topic Collection for their contributions, and we thank the journal
editors and the editorial staff of The Journal of Chemical Physics for
their invaluable assistance.
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