INTERPLAY OF THE GLASS TRANSITION AND THE LIQUID-LIQUID PHASE TRANSITION IN WATER (SUPPLEMENTARY INFORMATION)

Nicolas Giovambattista^{1*}, Thomas Loerting², Boris R. Lukanov³, Francis W. Starr³

¹ Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA, ²Institute of Physical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria, ³Department of Physics, Wesleyan University, Middletown, CT 06459, USA

I. GLASS TRANSITION FROM DILATOMETRY

Recent experiments have started to explore the pressure dependence of $T_g(P)$ for amorphous ices at high pressure [1, 2]. Particularly relevant to our findings is Ref. [1], where the T_g of recovered HDA as function of pressure is reported from dilatometry experiments (*i.e.*, from $\rho(T)$) over the pressure-range $100 \leq P \leq 300$ MPa. It is not obvious how the $T_g(P)$ loci determined from DSC experiments (*i.e.*, from $c_P(T)$) compare with the $T_g(P)$ loci measured from dilatometry experiments. Consequently, we examine the $T_g(P)$ loci estimated from $\rho(T)$ for the ST2 model, so that we can compare with the calorimetric determination and ultimately with the experimental findings of Loerting and co-workers.

To determine T_g from $\rho(T)$, we follow the same procedure used in the dilatometry experiments [1]. In these experiments, $\rho(T)$ is measured upon heating amorphous ices at constant pressure. It is found that in the glass state, $\rho(T) \propto T$. Assignment of $T_g(P)$ is given by the temperature where $\rho(T)$ deviates from this linear behavior. In some of our cases, we have a glass-glass transition before the ultimate glass-liquid transition. The glass-glass transition is identified in the same manner as the glass-liquid transition.

The resulting $T_g(P)$ loci obtained from $\rho(T)$ for the ST2 model case are shown in Fig. S1 and contrasted with our previous results from $c_P(T)$ (Fig. 3 of manuscript). It is remarkable how similar the $T_g(P)$ loci are for the two methods – particularly evident in Fig. S1b and S1c. Indeed, $T_g^{\text{HGW}}(P)$, $T_g^{\text{LDA}}(P)$, and $T_g^{\text{HDA}}(P)$ from the two different methods are nearly identical. We note that a different definition of T_g , based on $c_P(T)$, $\rho(T)$, or other macroscopic property, might not necessarily show such a quantitative similarity. However, the qualitative similarity in the shape of the $T_g(P)$ locus should be robust. The similarity in the $T_g(P)$ loci provides confidence that the $T_g(P)$ measurements obtained experimentally through density should correlate well with $T_g(P)$ measured by more traditional means, such as DSC techniques. This provides justification to compare our T_g findings for the ST2 model with data obtained from dilatometry experiments of Ref. [1], as discussed in the main text.

FIG. S1: Comparison of the $T_q(P)$ loci calculated from $\rho(T)$ with those obtained from $c_P(T)$ for ST2 water. The panels and color gradients follow the same sequence as Fig. 3 of the manuscript; in each panel, the open symbols are from $\rho(T)$ data, and filled symbols are from $c_P(T)$ data (Fig. 3 of manuscript). In many cases the results from the two methods are so close that the open symbols obscure the filled symbols. (a) $T_g^{HQG}(P)$ determined by hyper-quenching the equilibrium liquid at the desired pressure P, and reheating at that same pressure. At $P\approx 250$ MPa, $T_g^{\rm HQG}(P)$ and the equilibrium liquid-liquid co
existence line $[T_{\rm LL}(P)]$ intersect one another. At
 $210 \leq P \leq 260$ MPa, two features are observed in the density (see Fig. 5a of manuscript for the case P = 250 MPa) suggesting an HDA-to-LDA transformation at low-T and an LDA-to-liquid transformation at higher-T; hence there are multiple symbols in this pressure range. (b) The glass transition temperature of compressed HGW, $T_g^{\text{HGW}}(P)$. A small deviation between the $T_g^{\text{HGW}}(P)$ locus obtained from $\rho(T)$ and $c_P(T)$ appears at approximately $P \geq 460$ MPa where compressed HGW converts to a high-density glass, HDA' (dashed-line). The solid violet line at $P \ge 460$ MPa represents the glass transition of HDA' to HDL. (c) The glass transition temperature of decompressed HDA, $T_g^{\text{HDA}}(P)$. A small deviation between the $T_g^{\text{HDA}}(P)$ locus obtained from $\rho(T)$ and $c_P(T)$ appears at low P where decompressed HDA converts to LDA (dashed line) before a glass transition to the liquid occurs.

- Seidl, M. *et al.* Volumetric study consistent with a glass-to-liquid transition in amorphous ices under pressure. *Phys. Rev. B* 83, 100201 (2011).
- [2] Andersson, O. Glass-liquid transition of water at high pressure. P Natl Acad Sci Usa 108, 11013–11016 (2011).