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Crystallisation of the amorphous 
ices in the intermediate pressure 
regime
J. Stern & T. Loerting

The crystallisation behaviour of very high-density amorphous ice (VHDA) and unannealed high-
density amorphous ice (uHDA) has been studied in situ by volumetry and ex situ by powder x-ray 
diffraction in the intermediate pressure range 0.7–1.8 GPa employing different heating rates (0.5, 5 
and 30 K min−1). This study shows that at pressures >1 GPa the crystallisation behaviour of VHDA 
and uHDA is basically the same for all heating rates. That is, parallel crystallisation is almost entirely 
suppressed with mainly ice XII forming. This contrasts former results reporting parallel crystallisation 
to approximately levelled phase mixtures of ice IV and ice XII even at higher pressures for uHDA. We 
speculate this to be due to formation of microcracks upon decompression in earlier works, but not in the 
present one. Crystallisation temperatures Tx are up to 16 K higher than previously reported, raising the 
low-temperature border to no man’s land and opening a considerably larger window for future studies 
on non-crystalline water. The results indicate uHDA to contain heterogeneities on the nanoscale, but 
VHDA to be rather homogeneous with nano-crystallites being largely absent. Upon transforming uHDA 
to VHDA, the nano-scale heterogeneities disappear for >1 GPa whereas microcracks do not.

Water is a fascinating substance and in many ways its behaviour eludes scientific expectations. These aberra-
tions from the ‘norm’ have been labelled the anomalies of water and have been described many times in lit-
erature1–3. One of its puzzling qualities is the great variety of solid phases it can form. Besides the numerous 
solid crystalline types (polymorphism)4, 5 also different solid amorphous phases have been identified (polyamor-
phism)6, 7. Figure 1 shows the phase-diagram of the thermodynamically stable phases and additionally includes 
the pressure-temperature regions, in which amorphous ices have been identified. By contrast to the other phases 
shown in the phase-diagram the amorphous ices are metastable, i.e., there is a phase of crystalline ice lower in 
Gibbs free energy. In this phase diagram three pressure regimes can be broadly defined. The lower pressure regime 
can be related to the area of stability of hexagonal ice Ih and at lower temperatures of ice XI, i.e., ~0–0.2 GPa. 
Intermediate pressures8 (also referred to as “medium pressures” in the literature9) range from ~0.2–2 GPa. This 
is the richest pressure range, in which water exhibits a broad variety of stable and metastable crystalline phases 
(ices II–VI, ice IX and ices XII–XV). The higher pressure range is accordingly located at ~p > 2 GPa where the 
“symmetric” ices VII, VIII and X can be prepared8. The amorphous ices have been labelled according to their 
densities and may occur below T ≈ 180 K and p < 3.5 GPa. Amorphous ice of low density can be obtained by water 
vapour deposition on a cold substrate10, hyperquenching of micrometer-sized droplets onto a cryoplate11 or by 
decompression of high-density amorphous ice (HDA) at elevated temperatures12. The low-density amorphous 
ices (LDAs) prepared by these different routes are very similar in terms of structure and density, and thus they 
represent a thermodynamically well defined metastable phase13. HDA was discovered in 1984 by Mishima et al.12 
by pressurisation of hexagonal ice Ih at liquid nitrogen temperatures. This process of pressure induced amorphisa-
tion (PIA) was then observed for the first time on the example of water. The latest amorphous phase described 
is very high-density amorphous ice (VHDA14). It can be obtained by annealing of HDA at intermediate pres-
sures (p > 0.8 GPa). Just like all stable and metastable crystalline ices, the amorphous ices can be quenched and 
recovered at ambient pressure and stored in liquid nitrogen. At atmospheric pressure and 77 K the amorphous 
ices’ densities are 0.94 ± 0.02 g cm−3 (LDA15), 1.17 ± 0.02 g cm−3 (HDA12, 15) and 1.25 ± 0.01 g cm−3 (VHDA14). 
LDA is located in the lower pressure regime, while HDA and VHDA are situated in the intermediate pressure 
regime and cease to exist at pressures exceeding ~3 GPa16. Just like between crystalline ices it is possible to switch 
back and forth between amorphous ices by varying pressure. One has to note, though, that the pressure-induced 
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interconversion of LDA into HDA and HDA into LDA is accompanied by a hysteresis, i.e., there is a range of 
metastability in the low-pressure regime for HDA and likewise in the intermediate-pressure regime for LDA17, 18.

The existence of more than one amorphous solid form of water is directly connected to the hypothesis that 
more than one liquid phase may exist for water. This hypothesis was described first in simulation studies and 
included the possible existence of a second critical point19. It aims to explain the abnormal evolution of various 
thermodynamic quantities in a region of the phase diagram which has been rather elusive to experiments. This 
region has been labelled ‘no man’s land’ of water20, a term originally “used to define a contested territory”21 and 
especially connected to the unoccupied fighting ground between the opposing forces in World War I. Regarding 
water, no man’s land is bordered by the homogeneous nucleation at higher temperatures TH where liquid water 
freezes inevitably and at lower temperatures by the crystallisation temperature of the amorphous ice phases TX 
(Fig. 1). Thus it is actually not an empty land in the original sense of the latin “terra nullius”, but occupied by 
ice polymorphs as is illustrated in Fig. 1. Only when considering water’s non-crystalline phase diagram (i.e., by 
excluding ice polymorphs) it can be referred to as unoccupied. However, even in this sense the term ‘no man’s 
land’ is used differently from its original usage: instead of two antagonising parties bordering to the ‘no man’s 
land’, rather one party, namely supercooled water, is bordering to it from both sides. It is in this region where the 
location of a possible second critical point and a phase boundary between two distinct liquid forms of water has 
been postulated19. One has to note, though, that there is still an ongoing discussion regarding the relation of the 
amorphous ices between one another and their relation to supercooled liquids22.

Different routes have been taken to breach or overcome the boundaries to no man’s land, both in experiments 
as well as in simulations23, 24. Coming from the high-temperature side crystallisation of liquid water has been 
delayed or avoided by hyperquenching experiments11, studying it in confinement25, 26 or as nanodroplets27. It may 
be disputable however, how far nanoscopic volumes interacting with the confining surfaces actually resemble 
bulk water. In bulk droplets fast evaporative cooling was coupled with ultrafast laser probing in order to obtain 
information about structure28 and nucleation rates near TH down to 227 K29. Near TX isobaric heating experi-
ments were done on LDA by differential thermal analysis (DTA)17 and on HDA by in situ volumetry30–32. In the 
study performed by Seidl et al. mainly in the low-pressure regime31, 32 it was shown that the pressure annealed 
variant of high-density amorphous ice – expanded HDA (eHDA) – is up to 11 K more stable against crystalli-
sation than the HDA obtained from pressure-induced amorphisation of ice Ih (unannealed HDA, uHDA). It 
was reasoned that the lower thermal stability of uHDA is due to nano-crystalline domains that remain in the 
amorphous matrix when it is produced from ice Ih

31. When uHDA is annealed at elevated pressures >1 GPa and 
decompressed at elevated temperatures to form eHDA the crystalline domains might disappear. In this scenario 
crystalline seeds are already prevalent in uHDA and only have to grow upon heating. In eHDA however, they first 
have to nucleate and then to grow, resulting in a higher thermal stability against crystallisation.

In the present study the work of Seidl et al. was extended to higher pressures by investigating crystallisa-
tion of uHDA and VHDA in the intermediate pressure range. The motivation is to study whether or not the 
pressure-annealing - that likely results in the disappearance of nano-crystalline domains responsible for the 
shrinking of the no-man’s land at low pressures - also helps to shrink the no-man’s land at intermediate pres-
sures. Alternatively, the structural inhomogeneities related to nano-crystalline domains in uHDA may survive 
the process of annealing and still be prevalent in VHDA. As eHDA is prepared from VHDA when decompressing 

Figure 1.  Phase diagram of water including the range of observation for metastable amorphous ices. The 
area of stability for the crystalline phases is bordered by the melting line TM at higher temperatures and the 
crystallisation line of the amorphous solid phases TX at low temperatures. LDA is mostly found in the low-
pressure region of the phase diagram (0–0.2 GPa), HDA and VHDA in the intermediate-pressure region 
(~0.2–2 GPa). At high pressures (>2 GPa) only crystalline phases are stable. Adapted from43.
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at elevated temperatures the nanocrystallites may very well disappear during the transformation of VHDA to 
eHDA. Similar to the experiments on uHDA and eHDA30–32 the crystallisation behaviour of VHDA was inves-
tigated in situ by volumetry and ex situ by powder x-ray diffraction. As we will demonstrate below, in the range 
p = 0.7–1.8 GPa VHDA behaves rather differently from uHDA as indicated in results previously reportedin litera-
ture30. Notably, the process of parallel crystallisation appears to be much more suppressed in VHDA and crystalli-
sation temperatures Tx seem to be considerably higher. By conducting an own set of experiments on uHDA under 
comparable conditions it can be shown however, that uHDA and VHDA exhibit almost the same crystallisation 
behaviour at p > 1 GPa. That is, uHDA reaches a state very similar to that of VHDA prior to transformation. At 
pressures p ≤ 0.8 GPa though, the results provide evidence for the suggestion of there being nano-crystalline 
‘seeds’ in the amorphous matrix of uHDA. Effectively, due to these novel results water’s low-temperature bound-
ary to the no-man’s land is raised by up to 16 K as compared to values formerly presented in literature30.

Experimental and Analysis
For the sample preparation a custom made piston cylinder setup (8 mm bore diameter) was employed. Uniaxial 
pressure was applied using a computerised commercial material testing machine (ZWICK model BZ100/
TL3S) which also allows the tracking of the piston displacement, and hence sample volume, in situ (software 
TESTXPERT 7.1). Displacement curves were converted into curves of volume change (ΔV) by taking into 
account the bore geometry. Temperature was controlled by heating elements inserted into separate bores in the 
cylinder close to the sample. Additionally, a stream of liquid/gaseous nitrogen pumped through copper loops 
surrounding the steel cell was regulated accordingly. The temperature was recorded via a temperature sensor (Pt-
100) inserted into the steel cylinder in another separate bore close to the sample33.

Crystallisation temperatures of very high-density and unannealed high-density amorphous ice were deter-
mined by conducting isobaric heating experiments. The starting material VHDA was prepared via uHDA, which 
itself was obtained by pressure-induced amorphisation of hexagonal ice Ih. In detail, ice Ih was compressed to 
1.6 GPa at 77 K to yield uHDA, then decompressed to 1.1 GPa and subsequently heated isobarically at 1.1 GPa 
to 160 K. Then the so-produced VHDA was quenched to 77 K and finally brought to selected pressures between 
0.7 and 1.8 GPa. At these low temperatures VHDA does not reconvert to HDA even when going to pressures 
p ≤ 0.8 GPa34. VHDA (Fig. 2) was heated isobarically past the crystallisation temperature Tx, were the phase trans-
formation to crystalline forms (ices IV, V, VI and XII, respectively) was observed. Due to the difference in density 
between VHDA and the obtained crystalline phases (ρ (VHDA) < ρ (cryst. ice)), a given transformation could be 
identified by a rather steep ‘step’ in the displacement curve indicating sudden densification. Onset temperatures 
of crystallisation Tx were determined by the intersection of two straight lines (as indicated in Fig. 2 by the black 
tangents on the dark red volume curves when heating with 0.5 K min−1).

The samples were then quenched and extracted at ambient pressure for further structural analysis. Powder 
X-ray diffractograms were recorded in a vacuum chamber at ~80 K in θ-θ geometry (Siemens diffractometer, 
model D5000, Cu Kα). For quantitative analysis of the powder x-ray diffractograms the most intensive Bragg 
peaks (100% relative intensity, Table 1) of a given crystalline phase pattern were evaluated assuming sphere-like 

Figure 2.  Isobaric heating of VHDA at different pressures p = 0.7–1.6 GPa. Samples were heated with different 
rates (depicted in respective colours) of 0.5 (dark red), 5 (cyan) and 30 K min−1 (dark yellow). In the upper panel 
the volume curves ΔV vs. temperature T are shown. Crystallisation temperatures Tx were usually identified by 
rather steep steps in the volume curve indicating transformation to denser crystalline phase mixtures and are 
labelled with the respective temperature values. In the lower panel powder x-ray diffractograms recorded  
ex situ are shown. The results from separate experiments with different heating rates are stacked for clarification. 
Relative yields of crystalline ices in the phase mixtures are indicated by percentages and the respective most 
intensive Bragg peaksmarked in the diffractograms with different colours (ice V in red, ice IV in green, ice XII in 
grey and ice VI in purple).
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crystalline particles of small size. By comparing the most intensive Bragg peaks of different crystalline ices from 
one measurement phase compositions were determined.

Results and Discussion
Influence of heating rate and pressure.  Similar to results formerly obtained on uHDA (0.2–1.9 GPa30; 
0.1–0.5 GPa32) and eHDA (0.1–0.5 GPa32) VHDA experiences parallel crystallisation at intermediate pressures 
0.7–1.8 GPa. That is, more than one polymorph of crystalline ice is formed upon crystallising VHDA. Figure 2 
illustrates the results obtained in the pressure range 0.7–1.6 GPa for isobaric crystallisation of VHDA using three 
different heating rates. It is apparent that the crystalline phase compositions depend on pressure and heating rate. 
At p < 1.6 GPa VHDA mainly transforms to ices IV and XII, with some ice V forming at 0.7 GPa (0.5 K min−1). 
At pressures p ≥ 1.3 GPa ice VI is also found upon crystallisation (Fig. 2, lower part). Also, the crystallisation 
temperature Tx increases with increasing heating rate. At 1.1 GPa for instance, when heating with a low rate 
(0.5 K min−1) crystallisation occurs at a temperature 18.5 K lower (164.5 K) as compared to heating with a high 
rate (30 K min−1, 183 K).

At one given heating rate Tx also increases with increasing pressure. For a rate of 0.5 K min−1 and going from 
0.7 → 1.6 GPa Tx is higher by approximately 15 K. The same holds true for intermediate (5 K min−1) and fast heat-
ing (30 K min−1). Furthermore, analogous to the former results on eHDA31, 32 and uHDA30–32, different mixtures 
of crystalline polymorphs are obtained. Especially at lower pressures (0.7 and 0.8 GPa) there is a considerable 
difference in the relative yields of crystalline phases when changing from slow to intermediate and fast heating. 
At 0.7 GPa ice IV (50%) and ice XII (43%) are formed in roughly equal amounts after heating with 0.5 K min−1. 
However, at 5 K min−1 mostly ice XII is obtained (92%) and far less ice IV (8%). At 30 K min−1 formation of ice IV 
is entirely suppressed, and ice XII can be obtained purely. While the observation of parallel crystallisation kinetics 
at elevated pressures is in qualitative agreement with previous results30–32, the suppression of all competing crys-
tallisation channels even at low heating rates in the amorphous matrix and especially at pressures p ≥ 1.1 GPa is a 
novel result. Parallel crystallisation from the amorphous matrix is generally governed by processes with different 
kinetics: slower processes starting at lower temperatures and faster ones commencing at higher temperatures 
(labelled type 1 and 230). Accordingly, at 0.7 GPa formation of ice IV (and V at a rate of 0.5 K min−1) on the one 
hand is governed by a process with slower kinetics, thus starting at lower temperatures and predominantly when 
heating with lower rates. On the other hand, formation of ice XII is determined by a process with faster kinetics. 
It crystallises to a greater extent at higher temperatures and faster heating rates. Similar behaviour is observed at 
0.8 GPa where considerable amounts of ice IV crystallise only when heating with a low rate (62%, 0.5 K min−1; 
38% ice XII)., while ice V does not form at all. At higher rates (5 and 30 K min−1) ice XII forms almost exclusively 
with a relative yield of >90%. The suppression of parallel crystallisation processes in VHDA is also evident at 
pressures above 0.8 GPa. Ice XII forms predominantly at 1.1, 1.3 and 1.6 GPa, no matter the heating rate. Its 
relative yield is >95% in nearly every case. Furthermore, at p ≥ 1.3 GPa also ice VI is obtained at a high heating 
rate. At 1.8 GPa (not included in Fig. 2, as only one heating rate was studied at this pressure) when heating with 
5 K min−1 ice VI takes over as the predominant phase forming upon crystallisation (83% ice VI, 17% ice XII).

This fits the picture established in the work reported on uHDA30. That is, the process of parallel crystallisation 
can be characterised by two (or more) different kinetics associated with polymorphic formation. At lower heating 
rates crystallisation occurs at lower temperatures and phases that form with slower kinetics will be obtained to a 
greater extent. These slower kinetic processes govern the formation of ices IV and V at lower pressures (Fig. 2). Ice 
V shows the slowest kinetics, and it only appears in traces at the lowest heating rate and lowest pressure studied. 
Correspondingly the transformation to ice XII is related to a process with faster kinetics. Thus ice XII is obtained 
at higher heating rates where Tx is also shifted to higher temperatures. This holds true for pressures up to 1.3 GPa. 
From there on ice VI starts to form when heating with 30 K min−1. The relative yield of ice VI increases with 
increasing pressure and at 1.8 GPa it is the phase of highest relative yield. That is, at lower pressures p ≥ 0.7 GPa 
the transformation to ice XII is the process with the fastest kinetics. At higher pressures p ≥ 1.3 GPa formation of 
ice VI takes over as the process with fastest kinetics.

Comparing Tx for VHDA and uHDA.  While this behaviour is generally in accordance with the findings for 
uHDA30, there are quantitative differences regarding phase composition after transformation and especially the 
crystallisation temperature Tx. At 0.71 GPa when heating with a rate of 0.5 K min−1 uHDA was reported to trans-
form to ice IX before crystallising to ices IV and V (Fig. 3 in the work of Salzmann et al.30). Two density steps are 
observable in the ΔV curve, one attributable to the formation of ice IX and the other to the formation of ices IV 
and V. In VHDA ices IV, V and XII form simultaneously. To elucidate these differences between the amorphous 
ices, uHDA was investigated in a likewise manner in a pressure range from 0.7 to 1.3 GPa employing heating 
rates of 0.5, 5 and 30 K min−1. The results demonstrate that notable discrepancies between uHDA and VHDA as 
starting materials in fact only occur at pressures p < 1 GPa. In Fig. 3 the volume curves for uHDA and VHDA are 
presented for all pressures and heating rates. In the most instances the phase predominantly produced is ice XII, 

Crystalline phases IV V VI XII

Most intense Bragg peak, 100% 
relative intensity (degree 2θ) 31.6 33.8 35.5 32.8

Literature 39 40 41 42

Table 1.  Most intensive peaks (100% relative intensity) of the respective crystalline ice phases. Structural data 
were taken from literature39–42.
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and it can generally be stated that the higher the pressure the more readily ice XII is formed. At 0.7 and 0.8 GPa 
crystallisation temperatures are in fact very similar for uHDA and VHDA at low and intermediate heating rates 
(0.5 and 5 K min−1), with a maximum difference of about 3.5 K at 0.7 GPa and heating with 5 K min−1. However, 
when high heating rates of 30 K min−1 are employed Tx is considerably lower for uHDA compared to VHDA, 
with a difference ΔTx of 12.5 K at 0.8 GPa and even 14 K at 0.7 GPa (Fig. 3(c and f)). The general trend that Tx at 
a given pressure increases with the heating rate is not followed in the case of uHDA at 0.7 GPa and 0.8 GPa. Also, 
at 0.7 GPa and a low heating rate ice IX is formed, while ice XII is not formed at all. In contrast, for VHDA ice 
XII can be found on the one side in approximately equal amounts as ice IV (Fig. 3(a)), and on the other side ice 
IX is not produced. Seidl et al.32 have reasoned that nano-crystalline hexagonal seeds may indeed transform to 
ice IX when uHDA is heated isobarically at p ≥ 0.3 GPa. This may explain why ice IX forms even at pressures up 
to 0.7 GPa from uHDA, while it does not crystallise from VHDA at all. Furthermore, this may also be the reason 
for the substantial discrepancies in Tx at 0.7 and 0.8 GPa when heating with 30 K min−1. While it is possible that 
at low and intermediate heating rates the uHDA matrix and the nano-crystalline domains within have enough 
time to relax and transform to a state similar to that of VHDA during annealing, this may not be the case at a high 
heating rate.

At pressures p > 1 GPa the differences in crystallisation behaviour disappear almost entirely. In fact, it appears 
that the higher the pressure, the smaller the difference between uHDA and VHDA both regarding Tx and the 
crystalline phase composition. At all pressures and heating rates ice XII is formed almost exclusively (>90%). 

Figure 3.  Volume curves of isobaric heating experiments with different heating rates (0.5, 5 and 30 K min−1) 
for uHDA (brown) and VHDA (orange) at pressures between 0.7 and 1.3 GPa. Crystallisation temperatures Tx 
were identified by rather steep steps in the volume curve indicating transformation to denser crystalline phase 
mixtures and are labelled with the respective temperature values. Relative yields of crystalline ices in the phase 
mixtures are indicated by percentages and the various polymorphs coded in different colours (ice IX in pink, ice 
V in red, ice IV in green and ice XII in grey).
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This indicates that the structural states of the amorphous phases at one given pressure and when heating with 
one given rate is very similar, if not the same just before the transformation. A further evidence for this is that 
the densification steps upon transformation in the volume curves are of almost the same size, meaning that the 
density of the amorphous phases just prior to crystallisation is in fact very similar. This seems sensible, as one 
would expect uHDA to transform to VHDA at pressures p > 0.8 GPa already at temperatures T < Tx. The uHDA 
to VHDA transition has been shown to take place at 130 K and 1.1 GPa by Amann-Winkel (Ph.D. thesis, Figs 4 
and 5), i.e., above 130 K uHDA no longer exists. Though, what is not so clear is whether the nano-crystalline 
domains in uHDA suggested by Seidl et al. survive the uHDA to VHDA transition or not. The results presented 
above suggest that nano-crystalline domains indeed disappear in all cases for p > 1 GPa, and also for lower heat-
ing rates at lower pressures.

Crystallisation behaviour of uHDA in comparison with literature.  Overall, one can state that the dif-
ferences in crystallisation behaviour between uHDA and eHDA noted at lower pressures p ≤ 0.5 GPa31, 32 can barely 
be noted when comparing uHDA to VHDA at higher pressures p ≥ 0.7 GPa. That is, only at pressures p < 1 GPa there 
are notable differences in phase composition (0.7 and 0.8 GPa when heating with 0.5 K min−1, see Fig. 3(a and d))  
and crystallisation temperature (0.7 and 0.8 GPa when heating with 30 K min−1, see Fig. 3(c and f)).

When comparing the results obtained here on uHDA with those from literature30, however, the difference is 
quite substantial. These discrepancies are illustrated in Figures 4 and 5. As can be seen in Fig. 4 crystallisation 
temperatures for uHDA in literature are almost always below those found for uHDA in this study. This may 
partially be due to the fact that slightly different heating rates were employed in the literature. Nevertheless, this 
cannot account for the rather substantial variation especially at low heating rates 0.5 K min−1 where the heating 
rate was exactly the same.

Inspecting the literature data on uHDA crystallisation more carefully, two differences to the present study 
surface: (i) different definitions for Tx were utilised to mark the onset temperature of transformation on volume 
curves and (ii) a different protocol of preparation was used to prepare uHDA, which was first decompressed to 
ambient pressure and then recompressed before isobaric heating rather than directly decompressed as done in 
this study.

Figure 4.  Crystallisation temperatures Tx of VHDA (orange) are compared to those of uHDA (brown) and to 
literature30 (blue) for (a)) slow, (b)) intermediate and (c)) fast heating.
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Concerning item (i), evaluating the old data with the tangent method also used in the present study the differ-
ences in Tx for instance at intermediate heating rates (2.2–4 and 5 K min−1, respectively) become almost negligi-
ble. However, at low heating rates of 0.5 K min−1 the variation in crystallisation temperature is still considerable 
even when taking into account different evaluation methods. One has to bear in mind that uHDA in literature30 
and in this study were heated isobarically under nearly identical conditions (with 0.5 K min−1 at 0.71 and 0.81 GPa 
in literature instead of 0.7 and 0.8 GPa, see Fig. 4(a)).

Also the examination of the crystalline phase composition reveals large differences, even though the same 
starting material uHDA is compared, and the pressure and heating rate are practically identical. To illustrate these 
divergences relative yields of ice XII in the crystalline phase mixture are presented in dependence of the pressure 
in Fig. 5. While VHDA and uHDA in the underlying study crystallise to almost exclusively ice XII at all pressures 
and heating rates (notable exceptions being 0.7 and 0.8 GPa when heating with a low rate), the formation of ice 
XII in the literature30 does not follow a stringent pattern. Even at pressures p > 1 GPa the relative yield of ice XII 
may be approximately 50% or less (Fig. 5(b)).

That is, the different evaluation method in item (i) cannot explain these variances. Hence, the difference has 
to be sought for in the experimental protocol, i.e., in item (ii) mentioned above. While in this study uHDA was 
prepared from ice Ih and then brought to the respective pressure of isobaric heating immediately, the uHDA from 
literature was first decompressed to ambient pressure and subsequently recompressed to higher pressures. It has 
been shown that upon decompressing high-pressure ices to ambient pressure ‘(micro)cracks’34, 35 are introduced. 
These microcracks increase the surface area and may act as nucleation spots in the amorphous matrix and could 
very well be a cause for inhomogeneous crystallisation behaviour. In other words, the ice IV that was found to 
crystallize almost purely in literature in the slow heating experiments starts to crystallize from the additional sur-
faces within the microcracks. By contrast, ice IV cannot crystallize in the present work in similarly slow heating 
experiments because the microcracks and hence the nucleation sites for ice IV are absent.

Relaxation of amorphous matrix vs. crystallisation in VHDA.  Tx can be identified with ease for 
experiments at 1.1 GPa: the volumetric curves shown in Fig. 2 feature two straight lines and a sharp kink sig-
nalling Tx. The two straight lines indicate linear thermal expansion of VHDA and sudden densification caused 
by crystallisation. This is evidenced in Fig. 6, for which the volumetric curves for a series of experiments at each 
pressure was analysed by ex situ X-ray diffraction experiments marked by arrows. Clearly, Bragg peaks suddenly 
appear at the kink, but not before the kink. At 0.7 and 0.8 GPa Tx can also be identified readily. The linear thermal 
expansion at low temperatures is followed by a stronger expansion at higher temperatures, where the amorphous 
matrix relaxes structurally and volumetrically in the experimental time scale. The sudden change from expansion 
to densification signals Tx. After the complete transformation to a crystalline phase/phase mixture the sample 
thermally expands upon further increase of temperature. Determination of Tx is less straightforward at 1.3 and 
1.6 GPa. The reason being that relaxation of the amorphous matrix is associated with densification (rather than 
the expansion seen at 0.7 GPa and 0.8 GPa). That is, densification may signal either relaxation of VHDA itself 
or crystallisation of VHDA. In most cases, the time scale for relaxation is much longer than the time scale for 
crystallisation. As a result one can identify two kinks in the volumetric experiment (see ΔV curves in Fig. 2), 
where the first one is associated with onset of VHDA relaxation and the second one with Tx. However, especially 
at 1.6 GPa it is rather challenging to identify values for Tx, most likely because the time scales for relaxation at the 

Figure 5.  Relative yield of ice XII in crystalline phase mixtures at given pressures and heating rates. Values 
obtained after crystallisation from VHDA are coloured in orange, from uHDA in brown and values from 
literature in blue.
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high temperature part of the curve become similar to the time scales for crystallisation. The result is a volumetric 
curve without a clear kink. The ex situ X-ray diffraction patterns (Fig. 6, 0.5 K min−1) show that transformation 
takes place just before the slope of the ΔV curve becomes positive again. That is, the expected step in the volume 
curve indicating crystallisation is masked by the densification of VHDA due to thermal relaxation. It is evident 
from the broad halo peak in the diffractograms that even at 170 K the sample is mainly amorphous. Only at 171 K 
sharp Bragg reflexes indicate the start of crystalline ice XII growth from the amorphous matrix. The change of 
slope in the ΔV curve from negative to positive reflects the completion of thermal relaxation and subsequent 
crystallisation of VHDA. The temperature, at which crystallisation commences can be extracted in this curve by 
the method of tangent intersection (see Fig. 6), which also results in 171 K. In this case there is a strong rounding 
of the volumetric curve near the tangent intersection, which shows that relaxation and crystallisation time scales 
are similar in this example. In most other cases the tangents coincide with the volume curves and signal that the 
time scales for relaxation and crystallisation are well separated, i.e., a well-defined kink is observed.

Summary and Outlook
We have demonstrated in this study of isobaric heating experiments that VHDA exhibits a considerably different 
crystallisation behaviour from that previously reported for uHDA in literature30 in the intermediate pressure 
range. Especially at higher pressures the process of parallel crystallisation is almost entirely supressed in VHDA 
for all heating rates as compared to literature. To make results directly comparable uHDA was studied under iden-
tical conditions as VHDA. One has to note that the protocol of preparation for uHDA varied from that utilised 
in literature30. While in this study uHDA was directly decompressed from 1.6 GPa to the respective pressure at 
which it was then heated isobarically, uHDA in literature was first decompressed to ambient pressure and then 
recompressed to higher pressures. During this initial step of decompression microcracks are introduced into the 
amorphous matrix as has been described previously35. This may be the reason for the considerable differences 
between uHDA studied here and uHDA investigated in literature30 regarding crystallisation temperature and 
especially crystalline phase compositions. The microcracks result in an increase in surface area and may in fact 
serve as nucleation spots in the amorphous matrix. This may explain lower values of Tx and answer the question 
why ice IV can be produced almost purely in literature30, while in this study there is always a considerable amount 
of ice XII (or other crystalline phases) next to ice IV.

Here it could be shown that at pressures of p > 1 GPa uHDA and VHDA exhibit almost the same crystalli-
sation behaviour. That is, the discrepancy in crystallisation temperature is ΔTx ≤ 2 K and apparently becomes 
smaller the higher the pressure. Also, both uHDA and VHDA transform to ice XII almost exclusively no matter 
the heating rate. This can be reasoned by the circumstance that at pressures p > 0.8 GPa HDA will transform to 
VHDA at elevated temperatures and before crystallising. Thus, at 1.1 and 1.3 GPa the different amorphous phases 
should be very similar prior to crystallisation. This is also indicated by the fact that the densification step in the 
volume curves during transformation is of approximately the same size - keeping in mind that both uHDA and 
VHDA transform almost entirely to ice XII, which will have the same density at a given pressure regardless of 
the prephase. This observation is supported by relaxation studies with dielectric spectroscopy36, indicating that 
very high-density amorphous ice transforms to an ultraviscous liquid state prior to crystallisation at 1 GPa and 

Figure 6.  Ex situ x-ray characterization (bottom panels) of samples obtained at various points in volumetric 
experiments (top panels). For the volumetric experiments samples of VHDA were heated isobarically in a series 
of experiments at each pressure with 0.5 K min−1. Arrows in different grey scales identify temperatures at which 
samples were quenched and recovered for x-ray characterization. The orange arrow marks Tx. Diffractograms 
are stacked for clarity and their colours match the colours of the arrows. The relative yields of crystalline ices in 
the phase mixtures are indicated by percentages and marked in different colours (ice IV in green and ice XII in 
grey).
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T > 140 K. Similarly, recent isobaric in situ volumetry studies on the relaxation of eHDA at higher pressures have 
yielded glass transition temperatures Tg of approximately 125 ± 5 K at p ≥ 1 GPa37.

At lower pressures p ≤ 0.8 GPa notable differences in the transformation behaviour can be found. While at low 
and intermediate heating rates values for Tx are very similar for uHDA and VHDA, they are up to 14 K lower for 
uHDA when heating with 30 K min−1. A possible explanation may be the existence of nano-crystalline domains 
acting as nucleation seeds within the uHDA matrix which had been proposed to be responsible for the differences 
in crystallisation behaviour between uHDA and eHDA at lower pressures31, 32. It was reasoned that in case of 
uHDA the crystalline domains only need to grow, whereas in eHDA they first have to form and hence the higher 
thermal stability against transformation in eHDA of up to 11 K. For VHDA, while at low and intermediate heating 
rates the time scales may be low enough for crystalline seeds to disappear at 0.7 and 0.8 GPa, this may not be the 
case when heating with high rates. In this case the nano-crystalline domains may trigger transformation already 
at much lower temperatures than would be expected.

The size of the no-man’s land and how it was shrinked by the previous work of Seidl et al. and the present work 
is shown in Fig. 7. The crystallisation temperatures of VHDA (orange in Fig. 7) and eHDA (green in Fig. 7) seem 
to connect continuously as a function of pressure, which indicates that the competing crystallisation channels are 
similarly suppressed in both eHDA and VHDA. However, there still seems to be room for further improvement, 
both for eHDA and VHDA, since a few nano-crystalline domains still seem to exist as ice IV formation cannot 
be avoided entirely, e.g., at 0.7 and 0.8 GPa at low heating rates. Thus, the challenge posed is to eliminate the 
nano-crystalline domains entirely to shrink no man’s land even further. The present work indicates that the trans-
formation step from uHDA to VHDA governs the slow-down of the slower crystallisation channel. It thus seems 
sensible to tune the parameters for the uHDA to VHDA transformation in order to aim for complete removal of 
the competing second crystallisation channel and further narrowing of the no-man’s land. Unfortunately, there 
is no way of detecting or visualizing these domains directly. The density of nano-crystalline domains can only 
be inferred indirectly from observations of the rate of the second crystallisation channel, which in the ideal 
case should become zero once all nano-crystalline domains are removed. In the present work we see a massive 
slow-down of this second channel, albeit we have not yet reached a rate of zero, i.e., its complete elimination.
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