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Abstract: The task of vibrational mode reordering is very important for reaction valley studies and for the determi-
nation of small curvature tunneling effects. An extended algorithm for adiabatic mode reordering is presented. It is based
on the method introduced by Konkoli et al. [J Comput Chem 1997, 18, 1282], which is shown to suffer from numerical
problems in the region of frequency-crossings and avoided crossings. One improvement is the use of cubic splines for
the interpolation of the projected matrix of force constants, which allows larger step sizes between the discrete points
along the reaction path, where vibrational analysis is performed. The main improvement is the use of perturbation theory
to resolve crossings and avoided crossings. Within this theoretical framework it becomes clear why the method of the
maximal overlap between the normal modes cannot work properly, as eigenvectors associated with nearby eigenvalues
tend to become “wobbly”. Thus a perturbative procedure is designed that is used for all cases where two harmonic
frequencies approach each other and the overlap of the associated normal modes is of no practical use. Advantages of
the new procedure are the use of larger step sizes along the minimum energy path and the much more reliable resolution
of mode-crossings and avoided crossings independent of the systems symmetry. In addition to that it is shown that one
should be very cautious in all computational situations when working with eigenvectors associated with nearby

eigenvalues.
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Introduction

When investigating a chemical reaction quantum mechanically, the
stationary points (i.e., the minima and the transition state) as well
the reaction valley connecting them are of big interest. The sta-
tionary points are characterized by a zero gradient and 3N-6
normal modes, when performing a vibrational analysis for a non-
linear molecule with N atoms." The minimum energy path (MEP)
connecting the stationary points may be calculated by various
methods,> ® and the reaction valley may be described by 3N-7
vibrational modes orthogonal to the MEP.”® The method of de-
termining these vibrations may be seen as a conventional vibra-
tional analysis after projecting the gradient out of the force con-
stant matrix.”® A key position in this investigation is the
evaluation of the generalized normal mode frequencies w; as a
function of s, where s is the reaction coordinate (s equals O at the
transition state, s < O at the educt side, and s > 0 at the product
side of the reaction).®'® The 3N-7 generalized frequencies may
undergo some crossings and avoided crossings when following a
chemical reaction, depending on the electronic structure and sym-
metry of the molecule along the reaction path. As the force

constant matrix is evaluated only at some points along the reaction
path, the correct ordering of the normal modes between the dis-
crete steps along the MEP is a nontrivial but important task. The
importance of the reordering of normal modes lies in the depen-
dence of the coupling coefficients B,-’s(s)m on the right assign-
ment. With the help of coupling, one can determine if and how the
normal modes couple with the reaction coordinate and therefore
how they contribute to the progress of the reaction at each stage.
Further on a unified reaction valley analysis may be performed
properly, which is a powerful tool for a thorough investigation of
a chemical reaction.'' In addition to that the widely used small
curvature tunneling correction is determined with the help of the
Biys(s).S,l(),IZ—]()

In the easiest case the mode reordering is carried out by
symmetry requirements to detect avoided crossings of the w;(s)
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directly. If the reaction is of C,-symmetry or if the symmetry
changes along a reaction path (thus leading to bifurcation points'”)
the reordering might become a difficult task. Even if the system is
theoretically of a certain symmetry throughout the reaction, there
are still numerical inaccuracies in determining the MEP, which
might distort the symmetry. Normally this does not affect the
whole investigation but forces the reduction of the step size along
the MEP, which leads to considerable computational effort. The
advantages of the new reordering algorithm over former reordering
procedures have already been discussed by Konkoli et al.,'® and a
very consistent algorithm for adiabatic mode ordering was pro-
posed. We use this algorithm as a basis and present improvements
that allow a bigger step size along the MEP and assure the correct
reordering of the normal modes; we also do this in the cases where
the algorithm by Konkoli et al.'® fails for numerical reasons. One
should be aware that there are also other definitions of reaction
paths in the literature® where this mode reordering might be
applied as well. The choice of the MEP as reaction path is
straightforward, as it is also used in reaction valley studies.''

Short Overview of Mode Reordering

As the theory of mode reordering can be found elsewhere very
elaborately,'® we just want to give a brief overview about the key
features: The force constant matrix is determined in internal mass
weighted coordinates at some points along the MEP and at the
stationary points. On the nonstationary points the gradient is pro-
jected out to determine the generalized normal modes along the
reaction path.”-? From the projected force constant matrices one
calculates the eigenvalues and eigenvectors, which are propor-
tional to the square of the frequencies w; and equal to the normal
modes a,, respectively.'® Then the space spanned by the eigen-
vectors at each point is partitioned into subspaces according to the
symmetry of the molecule and the degeneracy of the normal
modes. On neighboring points the eigenvectors are rotated to
maximize the overlap (scalar product) between the normal modes.
Thus the eigenvalues associated with the eigenvectors yielding the
largest overlap on neighboring points are assigned to each other.

This way of mode reordering is adiabatic, as one uses the
eigenvectors of the projected force constant matrix to gain correct
mode assignments. A diabatic treatment involves modes that do
not necessarily diagonalize the projected force constant ma-
trix.2°2' We don’t want to adopt this small inconsistency from
Konkoli et al., and thus we call our algorithm “Adiabatic Mode
Reordering.”

Numerical Problems within the Method

The algorithm by Konkoli et al.'® treats the whole problem very

satisfyingly in theory. When evaluating the numerical stability of
all subsequent steps one realizes that there might occur problem-
atic situations in the determination of the eigenvectors (i.e., the
normal modes). When considering a mode-crossing of, for exam-
ple, two normal modes, the two eigenvectors span a two-dimen-
sional invariant subspace that has an infinite number of eigenvec-
tor bases. One may surmise that the eigenvectors already begin to
become undetermined when the eigenvalues begin to coalesce.??

Example in Two Dimensions

As an example for this indeterminateness we chose a symmetric
two by two matrix, which depends on a parameter x:

X 1
'+7000  ~ 10000
T(x) = n
1 X
~ 70000 ' 1000

The eigenvalues of matrix T(x) are depicted in Figure 1 and they
show an avoided crossing at x = 0. The aim now is to determine
the maximal overlap between neighboring eigenvectors when
changing the parameter x with a finite step size. One has different
possibilities to solve this problem. Either one determines the
matrix at each step and evaluates the eigenvectors numerically, or
an analytic expression for the angle is derived. Appendix I gives
the formulas for the analytic expression for the eigenvalues and the
eigenvectors, and the formula for the angle between the eigenvec-
tors at neighboring points. The stepsize is chosen ¢+ = 0.02 and the
matrices are calculated for —0.8 = x = 0.8. The eigenvectors are
determined numerically with the QR-method? with the help of the
program MATLAB.?* Figure 1 also shows the angles enclosed by
the eigenvectors at neighboring points for the numerical evaluated
eigenvectors. The angles are compared to the ones derived by the
analytical formula [eq. (10), Appendix I], and one sees clearly that
the numerical angles deviate strongly from the analytical ones
when the two eigenvalues approach each other.

The angle derived by analytical means has its maximum at
around 5° and the numerically calculated neighbored eigenvectors
enclose angles of more than 30°. If one enlarges the step size, the
numerical angle even reaches a value of 45°, which means that no
useful assignment can be done, either to eigenvector 1 or to
eigenvector 2 at the next point, as there is the same overlap with
both of them. In this article we will show the reason for this
wobbliness of the eigenvectors associated with nearby eigenvalues
in the framework of a perturbative approach, and we will give
some proposals for improvement of the original algorithm.

Perturbation Theory of Eigenvalues
and Eigenvectors

One has to bear in mind that the theoretical investigation about the
eigenvalues and eigenvectors is directly coupled to chemical and
spectroscopic features, as the eigenvectors of the projected force
constant matrix correspond to the generalized normal modes, and
the frequencies are proportional to the square root of the eigen-
values. To see the source of the numerical problems of determining
the eigenvectors one has to investigate their behavior by pertur-
bation theory. When stepping from one point to the neighboring
one, the projected matrix of second derivatives changes from F(s)
to F(s + 1) (with s being the length parameter along the reaction
path, and ¢ being the finite step size). If # is small, the change in
F(s) is also small. (We define E := F(s + t) — F(s) as a small
perturbation matrix.) According to the theorem of Wielandt-Hoff-
mann the changes in the eigenvalues are also small****;
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Figure 1. Left: The eigenvalues of the matrix T(x) in dependence of x. One sees an avoided crossing at x = 0. Right: The angles between the
eigenvector 1 at two neighboring points with a distance # = 0.02. When calculated analytically no big changes in the direction are found, but when

deriving the eigenvector numerically big uncertainties appear at x = 0.

>, (A(F(s) + E) — A(F()))* < |[E|2

i=1

@

A, is the i-tallest eigenvalue of the according matrix, n the dimen-
sion of the square matrix F, and | - ||~ defines the Frobenius norm.
One has to bear in mind that this applies only to symmetric
matrices and symmetric perturbations, which are much more well-
behaved than nonsymmetric ones because the condition of the
eigenvalues equals 1.2 From eq. (2) one can conclude that there
are no numerical difficulties in the perturbational expansion of the
eigenvalues if the perturbation E is sufficiently small.

Perturbation of the Eigenvalues

If A, is a single eigenvalue of the symmetric matrix F and E is a
symmetric perturbation with |[E|, = 1 one can deduce for A, (¢),
which is the corresponding eigenvalue of (F + ¢E)

M(g) = A+ cie + o8 + 36 + 0(&Y) 3)

with ¢, = by

o bii
=23y
ik !
n by bubyi ’ bkjbi/'
c3__2)\;‘_)\1\' )\k_/\i_z)\k_/\j
i#k Jj#Fk

The b,; are defined as b;; = x,-TExj, when x; is the eigenvector of
F corresponding to the eigenvalue A;, and (-)7 is used to denote the
transpose of a matrix. The principle of the derivation is found in
Appendix II.

Perturbation of the Eigenvectors

If the conditions of the last section hold, the eigenvector x,(g)
corresponding to the eigenvalue A,(e) can be expressed as

xi(e) = x; + dig + doe* + O(%) 4)
. « by
with d, = _EM — )\,-xi
i*k
- 1 buby S biby
&= E P WPV E A= A
JEk J U i#k

The perturbation of first order of eq. (3) has already been
reported in literature,”>?* whereas the perturbations of higher
order or the complete perturbational approach of the eigenvectors
is derived on our own. [One has to keep in mind that the resulting
vector x,(g) has to be normalized.]

Practical Meaning

When comparing eqs. (3) and (4) it becomes apparent that the
eigenvectors show a much higher sensitivity to a small perturba-
tion when some eigenvalues stick close together. For eigenvalues
the perturbation of first order (c,) is independent of the separation
of the eigenvalues. In comparison, the first order perturbation of
the eigenvectors (d,) has a term A, — A; in the denominator so
that d, becomes very big when eigenvalues A; approach the
associated eigenvalue A,. This can explain the findings of the
section Example in Two Dimensions, as the associated eigenvec-
tors become more and more undetermined when the eigenvalues
approach each other.

This has some consequences for the mode reordering algo-
rithm, because the overlap-method is now shown to fail if eigen-
values approach each other. In the next section an extension to the
original algorithm by Konkoli et al.'® is presented. This extension



Extended Method for Adiabatic Mode Reordering 389

35

20

Angle []

perturbative reordering of
10~ the eigenvalue:

0 - I

no use of perturbative elgenvectors

and no splines E

with use of perturbative elgenvectors

o5 and no splines \ ’
: ’
-/

1

\
i
L
1 .
i no use of perturbative
i eigenvectors, but splines
1
L}

use of perturbative
i eigenvectors and splines N

I I I L

-0.01 -0.008 -0.006 -0.004 -0.002

0 0.002 0.004 0.006 0.008 0.01

Figure 2. Angle between eigenvectors at neighboring points from the example from the section Example
in Two Dimensions and Figure 1. Comparison of the different improvements of the original algorithm
(which is labeled as “no use of perturbative eigenvectors and no splines”) show that all modifications lead

to an obvious improvement of the overlap.

circumvents the numerical problems introduced by the sensitivity
of eigenvectors and allows larger stepsizes along the MEP, which
lowers the cost of the whole computation.

Implementation into the Algorithm

The new algorithm is a modification of the original one'® with two
changes: The first extension is due to the perturbational approach
and affects the reordering of close modes, and the second change
is a better interpolation scheme to create intermediate points of the
force constant matrix. At this point one should mention that the
choice of the coordinate system is of big importance. Internal
curvilinear coordinates®> provide a physically more accurate de-
scription of the system than the rectilinear ones.

Perturbational Reordering

From the perturbational approach in the sections Perturbation of
the Eigenvalues and Perturbation of the Eigenvectors, two results
can be used for an extension of the original algorithm.

The apparent use of the perturbational results is the possibility
of calculating the overlap between the perturbed eigenvector at the
recent point and the eigenvector of the next point. In the original
algorithm'® the overlap S, , between the neighboring eigenvectors
a and b is generated via Formula (21), and the new access changes
this to

n

a,ﬁE/\f%*aﬁ.-- b, 5)

(SAB)[J,V = )\k
i

k#p

with f, , = aﬁEak and a; being the eigenvectors of the force
constant matrix F. E is the previously defined small perturbation in
the force constant matrix: E = F(s + ¢) — F(s).

This is a direct consequence from eq. (4) and one can decide
whether to include the perturbation of first or even second order.
Experiments with various examples have shown that first order is
usually sufficient. Figure 2 shows that the use of perturbed eigen-
vectors leads to a significant decrease in the angle between neigh-
bors, although the maximal angle stays the same. Thus it is
obvious that although the use of perturbed eigenvectors improves
the situation by increasing the overlap, the numerical uncertainty
in the eigenvectors associated with close eigenvalues still remains.
Therefore there is need of a special treatment for exactly these
situations when the overlap is still small although perturbed eig-
envectors are used.

As it was shown, the eigenvectors are of no use close to
(avoided) crossings of the associated eigenvalues, thus the modi-
fication of the algorithm must rely on the eigenvalues and their
perturbations. The idea is to predict the propagations of close
eigenvalues after the next step and compare the predicted values
with the calculated eigenvalues at this neighboring point.

The progressions of an eigenvalue A, may be deduced from eq.
3) as
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Figure 3. Top: The eigenvalues along the MEP of the decomposition reaction of carbonic acid
(H,CO; — H,0 + CO,). Middle: A linear interpolation scheme was applied to generate nine additional
interpolated force constant matrices between each quantum chemically derived one. A part of the top
picture is magnified to show the waving behavior. Bottom: same as the middle picture, but the

interpolation was done by cubic splines.

n 2
A,L(s+t):A,L(s)+fW+2)\f+‘kM+... (6)
k#Fp L ‘

The second order perturbation term is of use if E is small as the
term scales with ||[E|*>. The norm of the perturbation may be
varied by adjusting the step size, but in all investigated exam-
ples, the second order perturbation was very useful. For the
eventual case that the second order term is close to singularity
one may only consider the first order perturbation. For higher
precision and certainty one may even include the third order
perturbation into eq. (6), but the result does not improve suffi-
ciently compared to the computational cost in all our investi-
gations.

The proposed procedure for the correct reordering of eigenval-
ues works as follows:

1. Defining a threshold d. (If two eigenvalues get closer than
distance d, the overlap procedure is assumed not to be reliable.)

2. Checking whether two or more eigenvalues come closer than
distance d. This yields the set A = {A,(s)|3 A;(s) : [A,(s) —
A(9)| = d, with i # j}.

3. All eigenvalues A,(s) ¢ A get reordered by the overlap algo-
rithm, which is similar to the original one by Konkoli et al.,'®
with the extension of first order perturbed eigenvectors.

4. For all eigenvalues A,(s) € A calculate the second order perturbed
propagation with eq. (6). This yields a set of perturbed eigenvalues
A(s). Compare the perturbed eigenvalues with the remaining eig-

envalues A(s + 7) and assign in a way that
2 AKs) = As + 0] — min 9

KA(s)EA

This is in general a nontrivial minimization problem, but in the
case of vibrational mode reordering just a few (mostly two) modes
coincide, so that the global minimization problem is split into some
trivial problems.

Figure 2 shows the benefit of the procedure described above. A
threshold of d = 0.0001 was defined and this prevents application
of the overlap procedure if the overlap is not very close to 1. (In
the regions where the overlap algorithm couldn’t be applied be-
cause the eigenvalues were too close to each other, the overlap was
explicitly set to 1, i.e., the angle was set to 0°.) Therefore, the new
extension of the algorithm combines the advantages of the algo-
rithm by Konkoli et al. in the regions where the eigenvalues are
well separated with the new insights about perturbational reorder-
ing.

Interpolation by Splines

The matrix elements of the force constant matrix are calculated at
each step along the MEP. In the algorithm by Konkoli et al.,'®
linear interpolation between the matrix elements was proposed to
yield new points between the quantum chemically determined ones
to increase accuracy.'®

We have found that the linear interpolation scheme leads to
misbehavior of the eigenvalues, which can be seen in Figure 3. The
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Figure 4. Representation of harmonic frequencies along the MEP in the CH; + H, — CH, + H reaction
at the UHF/STO-3G level of theory. The stepsize along the reaction path was chosen as 0.05 bohr and the
reaction coordinate equals zero at the transition state. The reordering was performed by the new algorithm
and an avoided crossing (circle) was resolved, which was not resolved by Konkoli et al. using the same

stepsize at the same level of theory.

figure shows the modes along the MEP in the decomposition
reaction of carbonic acid (H,CO, — H,0 + CO,).?° The stepsize
along the MEP was set to 0.15 bohr, and to get new intermediate
points of the force constant matrix, two interpolation schemes have
been applied. The linear interpolation leads to very strange features
in the behavior of some eigenvalues (Fig. 3, middle picture), as
they seem to wave up and down. When performing the interpola-
tion by splines of third order (Fig. 3, bottom picture), the eigen-
value curves are smooth and no evident errors can be found any
more. Thus we propose the interpolation by cubic splines to be of
better use for generating intermediate points of the projected force
constant matrix, rather than linear interpolation. Also, Figure 2
shows the advantages of interpolated points as the maximal angle
decreases by a factor of two. Nevertheless, there is still uncertainty
in the eigenvectors and the (avoided) crossing at x = 0 must be
resolved with a perturbational reorder approach. At this point one
should mention that interpolation of the second derivative matrix is
one, but not the only, possibility to increase the number of points
along the MEP. Other approaches include various interpolation
schemes®”-*® of the MEP geometries, thus increasing the number
of geometries along the MEP.

Application of the Extended Mode
Reordering Method

Reaction CH; + H, - CH, + H

To directly compare the algorithms we examined the reaction
CH; + H, — CH,, + H at the UHF/STO-3G level of theory as was

originally done by Konkoli et al. Although there have been many
detailed investigations of this reaction®*° or directly related
ones,’! also at much higher level of theory,''**3? we decided to
use this level of theory and this reaction to study the advantages of
the improvements of the algorithm under the same conditions. The
quantum chemical calculations were performed by using GAUSS-
IAN98** and the reaction path was determined with
POLYRATE** and GAUSSRATE,*® which is the interface be-
tween GAUSSIAN9S and POLYRATE.

Figure 4 shows a plot of the already reordered harmonic vibra-
tions of the mentioned reaction, where the stepsize along the MEP
was chosen as 0.05 bohr. An avoided crossing (circle) could be
resolved with the new method, which was not resolved with the old
algorithm, using the same stepsize along the MEP. All supplemen-
tary information about this reaction (e.g., vibrational assignments)
may be found elsewhere.!' The main point is that under the same
conditions the improved algorithm shows a correct behavior,
where the original algorithm suffered from numerical problems.
The time saved may be enormous—in this case the step size was
chosen to be five times larger than in the algorithm by Konkoli et
al.,'® to yield a correct mode assignment. Thus, the computational
cost was reduced to a fifth (from 1609 s to 337 s on a Pentium 2
GHz for calculating the MEP from —2.5 to +2.5 bohr).

Reaction H,CO; — CO, + H,0

The most useful application of the improved algorithm lies in the
reordering of frequencies in reactions of C,-symmetry, as there are
no symmetry constraints, which forces analytical mode reordering.
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Figure 5. Top: The generalized normal mode frequencies of the decomposition reaction of carbonic acid
(H,CO; — CO, + H,0), reordered by the old algorithm.'® Bottom: Same as in the upper picture, but the
reordering was done with the new extensions of the algorithm. The nature of some crossings changed
completely, as an example the marked (avoided) crossing will be examined in detail.

Thus we used the decomposition reaction of carbonic acid to water
and carbon dioxide as an example to test the performance of the
new algorithm. The MEP was determined at a B3LYP/6-31+G(d)
level of theory and a stepsize of 0.05 bohr (with the same program
packages as in the last section). Second derivatives were calculated
every third step, so that generalized normal mode analysis was
performed every 0.15 bohr. Figure 5 shows the generalized normal
mode frequencies, once reordered with the old algorithm, and once
with the new, improved version. One clear difference between the

two methods lies in the resolution of various crossings. One
differently resolved crossing was chosen as an example (marked
by the circle at s = —0.15) to decide which algorithm resolved it
the right way.

For a thorough investigation of the generalized normal modes,
we depicted the modes (drawn as vectors) together with the mol-
ecules at the reaction path on both sides of the crossing (Fig. 6).
We wanted to decide which algorithm performed correctly by
“visual inspection” of the two nearby modes before and after the
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Figure 6. The normal modes before and after the avoided crossing from Figure 5. The top pictures show
the normal modes belonging to the higher harmonic frequencies, and the bottom pictures show the normal
modes belonging to the lower harmonic frequencies. The correspondence between horizontally neigh-
boring motions can easily be seen (assignment by solid arrows) and therefore it can be followed that an
avoided crossing is present. If the assignment followed the dashed arrows, a real crossing would have

occurred.

crossing. Thus we compared the vibrational motion of the mole-
cule at s = —0.3 and with a frequency of 1292 cm ™' (upper left
picture in Fig. 6) with the two possible propagations at s = 0.0
with the frequencies 1295 and 1272 cm ™' (upper right and lower
right picture in Fig. 6, respectively). One may find a clear corre-
spondence between the two upper pictures and between the two
lower pictures, as the generalized normal mode vectors have
similar directions. Therefore one may surmise that the higher
frequency before the (avoided) crossing can be matched to the
higher frequency after the (avoided) crossing, thus really causing
an avoided crossing. This is only one example of different reso-
lution of crossings by the two algorithms. There may be many
more found when looking at Figure 5, thus emphasizing the big
difference in the performance of the original and the improved
algorithm.

Conclusions

The algorithm for reordering of normal modes by Konkoli et
al.,'® although being analytically very useful, has been shown to
suffer from numerical problems, especially when two harmonic
frequencies approach each other. We propose an extension of

the original algorithm on the one hand by a more powerful
interpolation procedure of the projected force constant matrix,
which makes use of cubic splines instead of linear interpolation.
On the other hand we have stressed the numerical instability of
the original algorithm, and we propose circumvention of these
problems by perturbational approaches to both the eigenvalues
and eigenvectors of the force constant matrix. These values
correspond proportionally to the square of the harmonic fre-
quencies and the normal modes of a molecule, respectively. The
new algorithm improves reordering of the frequencies twofold:
First, a larger stepsize along the minimum energy path can be
chosen, thus reducing the computational effort considerably.
Second, the resolution of the crossings has been shown to be
more reliable with the improved algorithm.

One more benefit of this work is that the perturbational
approach exhibits the big problems that appear when working
with eigenvectors belonging to nearby eigenvalues. The direc-
tion of the eigenvectors becomes undetermined and they are of
no physical meaning for any useful quantitative analysis. Thus
one has to bear in mind that this result does not only affect the
reordering of normal modes, but all situations in physical and
chemical systems, when eigenvector analysis is performed on
experimental data.
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Appendix I

The eigenvalues and eigenvectors of matrix 7(x) can easily be
derived with a computer algebra package®® as

1+ 1002

zEvall =1=x W (8)

and

(—=10x — 1 + 100x*)(—10x — 10z — \/1 + 100x* + 200xt + 100£ + 1)

©

,Evec, =

(mx F 1+ 100x2)
1

respectively.

Thus, having defined a stepsize ¢ between discrete values of x,
one has to evaluate the angle between the eigenvectors Evec,(x)
and Evec,(x + ), which turns out to be

acos

Appendix II

First, let’s recall some properties of eigenvalues and eigenvectors
of symmetric matrices:

e A matrix A € R"™" is called symmetric if A” = A holds. Thus
each symmetric matrix is square.

e The eigenvalues of a symmetric matrix are real.

e Corresponding left and right eigenvectors are identical. They
form a set of orthonormal vectors and a basis of R”.

These statements can be directly deduced from the spectral theo-
rem®” and will be used here without further justification.

As the second derivative matrix of the energy with respect to
the coordinates is evidently symmetric, we can use these properties
of the eigenvalues and eigenvectors.

Expansions of Eigenvectors and Eigenvalues
If A € R"™" is symmetric and A, and x, are the eigenvalues and
eigenvectors, respectively, the following equations hold:
Ax, = My

XIA = A (11)
When perturbing A with a symmetric matrix of norm e, the
eigenvalues and eigenvectors are perturbed as well. If ¢ is suffi-
ciently small, the change in the eigenvalues will also be small [eq.
(2)]. For the perturbed quantities the following equations hold:

(A + £E)x(e) = A(e) xile)

x(e)"(A + E) = M(e)xi(e)” (12)
E is a symmetric perturbation with |[E|| = 1, so that ||E| = .

The eigenvalues A,(e) and the associated eigenvectors x, (&)
may be expanded in power series:

M(e) = A+ ¢ + e + O(EY) (13)

W(=10x = T+ 10027 + 1 \(—10x — 10 — 1 + 10027 + 200xt + 1007 + 1)’ + 1

10)

x(€) = x, + die + dg* + O(&°) (14)

where d; € R” and ¢; € R. As the eigenvectors span the whole
R”, the d; may be represented on the basis of the eigenvectors x;:

di= > s;x; (15)
j=1

Inserting expansions (13) and (14) into eq. (12) and substituting
the d; via eq. (15) yields

(A + €E) xk+8251/»xj+822s2jxj+--~

j=1 Jj=1

=N tcetoeg+-)

X xk+szs1j)c_,+szzszjxj+---

j=1 j=1

(16)

By the method of coefficient comparison of the &'-terms, eq. (16)
yields

n n
A E 5%+ Exg = A E 5%+ cix, 17
j=1 j=1
and coefficient comparison of the £-terms results in
n n n n
A Eszjxj +E Esljxj =N zszjxj + ¢ Es]jxj +c, (18)
j=1 j=1 j=1 j=1

Recalling eq. (11), eq. (17) may be transformed into



'
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> (= A)syx; + Ex, = e (19)
j=1

hen multiplying eq. (19) from the left with x} (i = 1, ..., n)

one has to discriminate between two cases:

In

Case 1:i = k
The whole sum on the left hand side of eq. (19) becomes zero
(because of the orthonormality of the eigenvectors of A) and eq.
(19) becomes
(20)

xiEx, = ¢,

which is exactly the result presented in eq. (3) for the perturba-
tion of first order of the eigenvalues.
Case 2: i # k
Eq. (19) becomes
(A= A)sy; + xiTE-xk =0

thus yielding

_ x'Ex; )1
S = X— A, 2n
and therefore
" x'Ex
d=> £ 22)
ik )\k - )\i

which is exactly the result presented in eq. (4) for the perturba-
tion of first order of the eigenvectors.

a similar manner one may deduce the second order perturbations

from eq. (18), and even higher order perturbations when collecting
terms in eq. (16) that are of higher order in €. As the calculations
are analogous, they will be omitted.
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